• Title/Summary/Keyword: Tensile test

Search Result 4,151, Processing Time 0.032 seconds

Pilot Study on the Shear Strengthening Effect of Concrete Members Reinforced by Kagome Truss (카고메 트러스로 보강한 콘크리트 부재의 전단 보강효과에 관한 기초 연구)

  • Kim, Woo;Kang, Ki-Ju;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.237-244
    • /
    • 2012
  • There is mounting recognition among concrete researchers that fiber reinforcement makes up for the inherent weakness in resisting tensile force of structural concrete. In practice of application of the fiber to concrete, however, several problems still remain to solve for assuring a uniform mix quality. The Kagome truss that is widely used in mechanical engineering field seems to be a good replacement for the steel fiber. This paper presents the test results of a pilot study for the concrete members reinforced by Kagome truss which is a periodic cellular metal of wire-woven. Three types of Kagome truss bulk were prefabricated and filled with normal concrete to make small-scaled test beams. The beams reinforced by a normal steel stirrups were also tested up to failure to compare the behavioral results. From the results obtained, it is appeared that comparing with beams reinforced by normal stirrups, the beams reinforced by Kagome truss showed better performance in load carrying capacity as well as ductility. Therefore, the Kagome truss is proved to be a good web shear reinforcing material.

A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW (슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구)

  • Moon, In-June;Jang, Bok-Su;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

A Study of Characteristics on the Dissimilar Metals (Alloy Steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding : Part 1 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 1)

  • Shin, Tae Woo;Jang, Bok Su;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.61-68
    • /
    • 2016
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E91T1-B9C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, tempered martensite and lower bainite were formed in first layer of weld metal. The amount of tempered martensite was decreased and the amount of lower bainite was increased with increasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered Martensite and lower Bainite. Tensile strengths of dissimilar welds decreased with increasing heat inputs. Dissimilar welds seemed to have a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals showed that the corrosion rate increased with increasing heat inputs due to the increase of the amount of lower Bainite.

Characteristics of the Natural Fiber Drain Board for Environmentally Friendly Soil Improvement Method (자연친화형 연약지반개량공법을 위한 천연섬유배수재의 특성 연구)

  • Kim, Ju Hyong;Cho, Sam-Deok;Jang, Yeon-Su;Kim, Soo Sam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • The recent environmental protection issue has diminished the supply of sand for soft ground improvements so much that the prices of sand have shown a sudden rise. Plastic material is one of substitutes for sand material, but plastic is nonperishable and doubtable if it has potential environmental hormone disrupting substances. Moderate-priced natural fiber drain board made with coconut coir and jute filter are in the spotlight recently as an alternative material for sand and plastic drain board etc. Natural fiber drain has not only competitive price but also a characteristic of assimilation into the soils after finishing of its own function. Discharge capacity of the fiber drain board evaluated by triaxial type discharge capacity test was relatively lower than that of plastic drain board. Nevertheless, settlement and pore pressure dissipation behaviors of the fiber drain board and the plastic drain board which were installed in the clayey soil during the composite discharge capacity test were almost similar. It was also found that biodegradation of the fiber drain board was in progress until 18 month after installation in the clayey soil, but they had still enough engineering properties to use at field.

Experimental Investigation on Relationship of Winding Process Variables and Mechanical Properties for Filament Wound Composites (필라멘트와인딩 복합재의 기계적 특성과 와인딩시 공정변수와의 관계에 대한 실험적 고찰)

  • 윤성호;김준영;황태경
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.56-65
    • /
    • 1999
  • The relationship of the winding process variables and the mechanical properties of filament wound composites is investigated experimentally. The winding process variables considered are the fiber tensions and the fiber ends. The filament wound ring specimens are fabricated using 3-axis controlled filament winding machine. Two types of carbon fibers, TZ-507 and IZ-40, are used as reinforcements and epoxy for filament winding is used as resin. During the winding process, the fiber tensions are varied from 0.5kgf to 3.0kgf, and the number of the fiber ends are varied from 1 to 6. The fiber volume fractions and the void contents for the ring specimens are measured through the resin digestion. The mechanical properties of the ring specimens are also evaluated by the split disk test. The test results show that the winding process variables affect the fiber volume fractions and the void contents of the ring specimens, which result in the variation of the tensile properties of the ring specimens. Therefore, suitable winding process variables should be applied to maximize the structural performance and the productivity for filament wound structures.

  • PDF

Experimental Study on Development for Separation and Reinforcement Geotextiles with Horizontal Wicking Drain Property (수평방향의 위킹 배수 특성을 지닌 분리·보강용 지오텍스타일 개발을 위한 실험적 연구)

  • Kim, Hong-Kwan;Ahn, Min-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • According to the recent civil engineering construction work site which is a complex process, development of multi-functional geotextiles is required. In this study, the characteristics of five different modified cross-section fiber yarns for the selection of wicking yarns were analyzed and yarns that can achieve target properties were selected. Experimental prototype geotextiles suitable for horizontal wicking drain property and reinforcement was developed and its tensile strength, 2% secant modulus, vertical water permeability, AOS, friction characteristics by the direct shear method, and vertical/horizontal wicking test were analyzed. These tests are conducted to verify the performance of the geotextiles with horizontal wick drain property, separation and reinforcement developed in this study. As a results of the indoor soil box test, it was confirmed that the geotextiles using the wicking yarn sufficiently exhibited the function of discharging excess pore water in the horizontal direction.

Pull-out behaviour of recycled aggregate based self compacting concrete

  • Siempu, Rakesh;Pancharathi, Rathish Kumar
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar ($D_b=10$, 12 and 16 mm) and embedment length of bar ($L_d=2.5Db$, $5D_b$ and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.

Study on Mechanical Properties of CFRP Composite Orthogonal Grid Structure (CFRP 복합재료 직교 격자 구조의 기계적 특성 연구)

  • Baek, Sang Min;Lim, Sung June;Kim, Min Sung;Ko, Myung Gyun;Park, Chan Yik
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, a grid panel structure in which the woven CFRP composites were stacked in the orthogonal array was proposed and the mechanical properties were analyzed and studied. The grid parts were fabricated by cutting prepregs and laminating them. The grid panel structure was fabricated by co-curing with lower laminate plate in auto-clave process. The behavior of the proposed grid panel structure was evaluated by tests under tensile, compressive, shear, and bending loads. The effect of increasing the stiffness of the orthogonal grid structure was verified through these tests. In addition, the finite element model was constructed and compared with the test results, confirming the validity and reliability of the test and analysis.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy (Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가)

  • Jung, Sujin;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.