• Title/Summary/Keyword: Tensile reinforcement

Search Result 771, Processing Time 0.032 seconds

Development and Characterization of Oyster Shell Powder Filled Polypropylene Composite

  • Shah, Atta ur Rehman;Prabhakar, M.N.;Lee, Dong-Woo;Kim, Byung-Sun;Song, Jung Il
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.201-206
    • /
    • 2014
  • Utilizing waste materials in making useful products is a globally increasing trend. This can reduce the cost and environmental issues. In this study, oyster shell powder (OSP) is reinforced as a filler in polypropylene (PP) matrix to make a new composite. The purpose is to improve fire retardant properties of PP as a result of OSP reinforcement. Mechanical, fire retardant and water absorption properties of the new composite have been studied in this research. Concentration of OSP reinforcement in PP has been varied by wt% and its effect on the above mentioned properties has been observed. SEM (scanning electron microscopy) images of tensile and bending fractured surfaces have been taken to observe the failure mechanism during mechanical tests. An increase in the fire retardancy has been observed as a result of the OSP reinforcement while tensile strength decreased. Stiffness also increased with the addition of OSP in PP.

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.

Effects of Steel Fiber Concrete (鋼纖維에 의한 콘크리트의 補强效果)

  • Koh, Chae-Koon;Kim, Moon-Ki;Rhee, Shin-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.47-56
    • /
    • 1985
  • Wasting fiberous residues from the cutting processes of steel materials at an iron-Works were mixed with concrete. The strength and toughness of steel fiber concrete with different steel contents were tested in a laboratory. The test results showed that the steel fiber residues can be used for the reinforcement of concrete. The potential applications of such product include floor constructions for facilities like dairy barns, grain storages, and machinery shops. The test results are as follows. 1. The compressive strengths of steel fiber concrete with one percent steel content by volume were 20 percent greater than that of plain concrete. The treatments also increased the concrete toughness by 96 percent. 2. When applied to tensile forces, the steel fiber concrete showed the increased strengths by 20 percent, and the toughness by 48 percent. 3. The steel content levels greater than or equal to 1.5 percent by volume resulted in the decreases of the compressive and tensile strengths of steel fiber concrete by 10 percent as compared to plain concrete. The concrete toughness increased with the steel contents. 4. The reinforcement effects of steel fiber depend on the quality of fiber material being used. Good steel fiber for concrete reinforcement appears to be uniform in shape and component, fine and long, and round-shaped.

  • PDF

Experimental and Application Examples of Composite Beams Strengthened by Lower End Compression Member and Upper Tension Reinforcement (단부 하부 압축재와 상부 인장 철근으로 보강한 합성보의 실험 및 적용 사례 연구)

  • Oh, Jung-Keun;Shim, Nam-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2019
  • The BX composite beam is designed to have the same cross-section regardless of the size of the momentum, which is a disadvantage of the existing steel structure. Combination of the H-beam end compressive material and the H-section steel tensile reinforcement according to the moment size in a single span, It is possible to say that it is an excellent synthesis which increases the performance. When underground and overhead structures are constructed, it is possible to reduce the bending, increase lateral stiffness, reduce construction cost, and simplify joints. The seamability of the joining part is a simple steel composite beam because of the decrease of the beam damping at the center of the beam and the use of the end plate of the new end compressing material. In the case of structures with long span structure and high load, it is advantageous to reduce the material cost by designing large steel which is high in price at less than medium steel.

Crack-controlled design methods of RC beams for ensuring serviceability and reparability

  • Chiu, Chien-Kuo;Saputra, Jodie;Putra, Muhammad Dachreza Tri Kurnia
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • For the design of flexural and shear crack control for reinforced concrete (RC) beams related to serviceability and reparability ensuring, eight simply-supported normal-strength reinforced concrete (NSRC) beam specimens are tested and the existing high-strength reinforced concrete (HSRC) experimental data are included in the investigation of this work. According to the investigation results of flexural and shear cracks, this works modifies the existing design formulas to determine the spacing of the tensile reinforcement for the flexural crack control of a HSRC/NSRC beam design. Additionally, for a specified shear crack width of 0.4 mm, the allowable stresses of the shear reinforcement are also identified. For the serviceability and reparability ensuring of HSRC/NSRC beams, this works proposes the relationship curves between the maximum flexural width and allowable stress of the tensile reinforcement, and the relationship curves between the shear crack width and allowable shear force that can be used to do the crack width control directly.

Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review

  • Najigivi, Alireza;Nazerigivi, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2017
  • During the past decades, development of reinforcing materials caused a revolution in the structure of high strength and high performance cement-based concrete. Among the most important and exciting reinforcing materials, Steel Fiber (SF) becomes a widely used in the recent years. The main reason for addition of SF is to enhance the toughness and tensile strength and limit development and propagation of cracks and deformation characteristics of the SF blended concrete. Basically this technique of strengthening the concrete structures considerably modifies the physical and mechanical properties of plain cement-based concrete which is brittle in nature with low flexural and tensile strength compared to its intrinsic compressive strength. This paper presents an overview of the work carried out on the use of SF as reinforcement in cement-based concrete matrix. Reported properties in this study are fresh properties, mechanical and durability of the blended concretes.

An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM (콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam

  • Zhu, Wenjun;Francois, Raoul
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.121-136
    • /
    • 2013
  • Tension tests were carried out to investigate the effect of the corrosion pattern on the ductility of tension bars extracted from a 26-year-old corroded reinforced concrete beam. The tensile behavior of corroded bars with different corrosion patterns was examined carefully, as were two non-corroded bars extracted from a 26-year-old control beam. The results show that corrosion leads to an increase in the ratio of the ultimate strength over the yield strength, but reduces the ultimate strain at maximum force of the reinforcement. Both the corrosion pattern and the corrosion intensity play an important role in the ductile properties. The asymmetrical distribution of the corrosion around the surface is a decisive factor, which can influence the ultimate strain at maximum force more seriously.

An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams (포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동)

  • Lee, Seong-Cheol;Choi, Young-Cheol;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF

Modified model of ultimate concrete compression strain (콘크리트의 극한변형률 수정모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • The purposes of this study are to verify a reasonable model of material characteristic and to propose a rational model of reinforcement characteristic considering monotonic and cyclic loading about manufactured reinforcing steel in Korea. Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. The tests for cyclic tension loading were performed for test variable as yield strength and reinforcement bar sizes. It was estimated that the total strain energy per unit volume was 74 $MJ/m^3$. The modified ultimate concrete compression strain model was proposed based on experimental study of cyclic tension test for manufactured reinforcing steel in Korea.

  • PDF