• Title/Summary/Keyword: Tensile force

Search Result 806, Processing Time 0.031 seconds

Influence of Crown Margin Design on the Stress Distribution in Maxillary Canine Restored by All-Ceramic Crown: A Finite Element Analysis

  • Ozer, Zafer;Kurtoglu, Cem;Mamedov, Amirullah M.;Ozbay, Ekmel
    • Journal of Korean Dental Science
    • /
    • v.8 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • Purpose: To investigate the influence of crown margin design on the stress distribution and to localize critical sites in maxillary canine under functional loading by using three dimensional finite element analysis. Materials and Methods: The bite force of 100 N, 150 N, and 200 N was applied with an angulation of $45^{\circ}$ to the longitudinal axis of tooth. Six models were restored with IPS e.max (Ivoclar Vivadent, Schaan, Liechtenstein) with a different margin design. With lingual ledge and various thicknesses, three different core ceramics were designed in each model. Result: In the core ceramic, the maximum tensile stresses were found at the labiocervical region. In the veneering ceramic the maximum tensile stresses were found at the area where the force was applied in all models. Conclusion: Shoulder and chamfer margin types are acceptable for all-ceramic rehabilitations. A ledge on the core ceramic at cervical region may affect the strength of all-ceramic crowns.

Research of Stresses Distribution and Loading Weight on Concrete Electric Pole Considering Field Condition (설치조건을 고려한 배전용 콘크리트전주의 응력분포 및 하중에 관한 연구)

  • Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.183-188
    • /
    • 2004
  • A method of double-pole construction is developing to strengthen the mechanical intensity of the electric poles. Therefore the mechanical properties of the double-pole were researched in this paper. First, considering field special quality electric poles were established. In the next tensile force was applied and stress distribution and fatigue load were examined. When a base of the pole is concrete, mechanical intensity of the double-pole increased about 1.7 times compared a single pole. In the case of general soil base, the concrete base should be needed to expect the reinforcement effect of the double-pole.

Minimization of the Spring back in the Coiling Process of the Helical Steam Generator Tubes of Integral Reactor SMART (일체형원자로 SMART의 나선형 증기발생기 전열관 코일링 시 스프링백 최소화 방안)

  • Kim, Yong-Wan;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.837-842
    • /
    • 2000
  • In the coiling process of helical steam generator tubes of integral reactor SMART, a considerable amount of spring back, which induces dimensional inaccuracy and difficulty in fabrication, has been arised. In this research, an analytical model was derived to evaluate the amount of the spring back for steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.

  • PDF

A Study on the Development of Stability Charts for Reinforced Embankments by Geotextile (Geotelrtile 보강사면의 안정도표개발에 관한 연구)

  • 서인식
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 1997
  • This paper presents the deterministic model to evaluate the two dimensional stability of geotextile-reinforced embankments on soft foundations. The potential failure surfaces in this study are assumed as the logarithmic spiral curves refracted at the boundary of layers. To facilitate the iterative calculations, we developed a program that determines the geotextile tensile force for an geoteztile-reinforced embankments. This program can be used for situations with a varying number of soil layers and soil types. A series of calculations have been made for a schematised situation. The results of these series are collected in stability charts, which are compared with those by circular potential failure surfaces. Using these charts in an early stage of the design provides a reasonable estimate of the stability of geotextile-reinforced embankments. In a later stage a more detailed calculation can be made by the developed programs.

  • PDF

A study on the adhesion of HTPB liner and PCP propellant (HTPB 라이너와 PCP 추진제와의 접착에 관한 연구)

  • 홍명표;서태석;임유진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.60-70
    • /
    • 2001
  • The study of compatible liner with ADP-505 propellant based PCP was performed. HTPB/DDl was chosen as a binder of liner in order to prohibit migration of nitroester plasticizer from propellant. The possible formulations for liner were screened by peel test of EPDM insulation/liner, propellant/liner and insulation/liner/propellant. Also, the adhesion tests including tension and shear were conducted. The adhesion of liner and propellant fumed out to be very good. The peel value was shown 1.5∼1.8 daN/cm, tensile force was 5.5∼6.0bar and shear force was 4.2∼5.0bar. In the samples of insulation/liner/propellant, they also have shown good adhesion properties. The peel, tensile and shear strength were 1.8 daN/cm, 5.0∼6.0bar and 4.5∼5.0bar, respectively.

  • PDF

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck System of Railway Bridges (철도교용 프리캐스트 바닥판의 적정한 종방향 프리스트레스 수준의 산정)

  • Jang Sung-Wook;Youn Seok-Goo;Jeon Se-Jin;Kim Young-Jin;Hyung Tai-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail. acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses, design codes and theoretical equations for the frequently adopted PSC composite girder railway bridge. The estimated proper prestress level to counteract those tensile stresses is over 2.4 MPa, which is similar to the case of the highway bridges.

  • PDF

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.

A Spring Back Calculation Model for the Sensitivity Analysis of Tube Design Parameters of Helical Steam Generator

  • Kim, Yong-Wan;Kim, Jong-In;Huh, Hyung;Park, Jin-Seok;Kim, Ji-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.355.2-355
    • /
    • 1999
  • The spnng back phenomena occurring in the coiling process of a steam generator tube induces the dimensional inaccuracy and makes the coiling procedure difficult. In this research, an analytical model was developed to evaluate the amount of the spring back for SMART steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.rocess.

  • PDF

Prediction of Laser Process Parameters using Bead Image Data (비드 이미지 데이터를 활용한 레이저 공정변수 예측)

  • Jeon, Ye-Rang;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2022
  • In this study reports experiments were conducted to determine the quality of weld beads of different materials, Al and Cu. Among the lasers used to make battery cells for electric vehicles, non-destructive testing was performed using deep learning to determine the quality of beads welded with the ARM laser. Deep learning was performed using AlexNet algorithm with a convolutional neural network structure. The results of quality identification were divided into good and bad, and the result value was derived that all the results were in agreement with 94% or more. Overall, the best welding quality was obtained in the experiment for the fixed ring beam output/variable center beam output, in the case of the fixed beam (ring beam) 500W and variable beam (center beam) 1,050W; weld bead failure was seldom observed. The tensile force test to confirm the reliability of welding reported an average tensile force of 2.5kgf/mm or more in all sections.