• Title/Summary/Keyword: Tensile ductility

Search Result 491, Processing Time 0.027 seconds

Flow and Engineering Properties of Fiber Reinforced Hwangtoh Mortars

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Hwang, Hye-Zoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.332-339
    • /
    • 2012
  • In this study, six mortar mixes were tested in order to examine the significance and limitations of hydrophilic fiber in terms of its capacity to enhance the tensile resistance of Hwangtoh mortar. Lyocell, polyamide and polyvinyl alcohol (PVA) fibers were selected for the main test parameters. The tensile capacity of mortars tested was evaluated based on the splitting tensile strength and the modulus of fracture, while their ductility was examined using the toughness indices specified in ASTM. Test results showed that the addition of lyocell and PVA fibers had little influence on the flow of the Hwangtoh mortars. To enhance the tensile capacity and toughness index of Hwangtoh mortar, it is proposed that fiber spacing above 0.0003 is required, regardless of the type of fiber.

Effect of Hydrogen Charging Time and Tensile Loading Speed on Tensile Properties of 304L Stainless Steels

  • Hwang, SeungKuk;Lee, Sangpill;Lee, Jinkyung;Bae, Dongsu;Lee, Moonhee;Nam, Seunghoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • This study dealt with the tensile strength characteristics of stainless steel 304L steel by hydrogen charging. Especially, the effect of hydrogen charging time on the tensile strength and ductility of 304L stainless steels was evaluated, in conjunction with the observation of their fracture surfaces. The tensile properties of hydrogen-charged 304L stainless steels were also investigated with the variation of tensile loading speeds. The hydrogen amount of 304L stainless steels obviously increased with the increase of hydrogen charging time. The tensile properties of 304L stainless steels were clearly affected by the short term charging of hydrogen. In particular, the elongation of 304L stainless steels decreased with increasing hydrogen charging time, due to the hydrogen embrittlement. It was also found that the tensile properties of hydrogen-charged 304L stainless steels were very sensitive to the crosshead speed for tensile loading.

Toughness Index and Post-Crack Equivalent Tensile Strength of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 휨 인성지수와 균열 후 등가인장강도)

  • 박홍용;이태림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.593-596
    • /
    • 1999
  • Steel fibers are added to concrete to improve energy absorption, impact resistance and apparent ductility, and to provide crack resistance and crack control. This study is to investigate the toughness index and post-crack equivalent tensile strength of steel fiber reinforced concrete properties on the load-deflection behaviors of the steel fiber reinforced concrete beam model specimens.

  • PDF

Effect of non-metallic inclusion on susceptibility to lamellar tearing (라멜라 테어 발생감수성에 미치는 비금속개재물의 영향)

  • 방국수;이종봉
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.3-10
    • /
    • 1985
  • Lamellar tearing susceptibility and through-thickness tensile ductility have been investigated in $40kg/mm^2 and 50kg/mm^2$ class tensile strength steel plates in terms of cleanliness of non-metallic inclusion and welding condition. The plate which had 0.01% cleanliness of A-type inclusion (MnS) had 61% of the reduction of area in the through-thickness direction and did not show lamellar tearing. Lamellar tearing susceptibility decreased with increasing the preheat and interpass temperature. The plate which had 0.04% cleanliness of A-type inclusion did not show lamellar tearing under the condition of 75.deg. C of preheat and interpass temperature.

  • PDF

Effect of microstructure on mechanical properties in dual phase steel (복합조직강의 기계적 특성에 미치는 미시조직인자의 영향)

  • 김정규;유승원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-84
    • /
    • 1987
  • A study has been made to clarify the microstructural effect on static tensile properties of the dual phase steel, in which the martensitic phase encapsulated islands of ferritic phase. The main results are as follows: Yield strength is associated with the degree of plastic constraint factor and tensile strength increases with increasing of strain hardening exponent. Also, the variation of ductility is dependent upon the amount of micro-brittle facets.

  • PDF

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforce Concrete Bridge Columns under Earthquake (지진시 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.296-303
    • /
    • 2000
  • The purpose of this study is to find inelastic behavior and ductility capacity of reinforced concrete bridge columns under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, due to the abrupt change in their stiffness local discontinuous deformation can be taken into account by introducing interface element. Also an analytical model is developed to express the confining effects of lateral tie which depend on the existence or nonexistence and the amounts of transverse confinement, etc. The proposed numerical method for inelastic behavior and ductility capacity of reinforced concrete bridge columns will be verified by comparison with reliable experimental results.

  • PDF

Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H. S.;Bang W.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

The Effect of The Second Phase Morphology on the Micro And Macro Fracture Behaviour of Dual Phase Steel (鋼 의 微視 및 巨視的 破壞擧動 에 미치는 第二相形態 의 영향)

  • 김정규;송삼홍;이장현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.239-246
    • /
    • 1982
  • The effect of the second phase morphology on the fracture ductility of dual phase steel was studied by means of tensile tests carried out room temperature. In this case the second phase morphology is characterized by two kinds; one is the MEF microstructure in which martensite encapsulated islands of ferrite, the other is the FEM microstructure in which ferrite encapsulated islands of martensite. The fracture ductility is improved by variation of the second phase morphology, but is essentially uneffected in the range of high strength ratio (4.7). Also the variation of ductility is well understood according to the difficulty of cleavage crack formation of the ferrite grain and to the brittleness of the martensitic structure.

The Effect of Annealing Condition on the Occurrence of the Delamination in Pearlitic Steel Wires (펄라이트 강선의 어닐링 조건이 딜라미네이션 발생에 미치는 영향)

  • Park, D.B.;Lee, J.W.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.120-123
    • /
    • 2007
  • The effects of annealing condition on the occurrence of the delamination in cold drawn hyper-eutectoid steel wires, were investigated. Annealing treatment was performed on cold drawn steel wires for temperature range of $425^{\circ}C\sim500^{\circ}C$ with the variation of annealing time from 30sec to 15min. The increase of annealing temperature and time would cause the decrease of tensile strength and the increase of ductility. However, the occurrence of the delamination, representing torsional ductility, showed the different way from the variation of ductility.

  • PDF

A Study on the Strength and Ductility Effect of High-Strength Concrete Columns Confined by Tied Hoops (띠근에 의한 고강도 콘크리트 기둥부재의 강도 및 연성효과에 관한 연구)

  • 박훈규;송재호;한상묵;장일열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.609-614
    • /
    • 1998
  • Lateral pressure by tied reinforcement greatly enhances the maximum strength and ductility of columns under concentric loading. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at the point of tied high-strength concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at the point was proposed. It is based on calculation of lateral confinement pressure generate from tensile that develop in transverse reinforcement.

  • PDF