• Title/Summary/Keyword: Tensile ductility

Search Result 491, Processing Time 0.027 seconds

Deformation behavior of the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel under different strain rate conditions (Fe-18Cr-14Mn-4Ni-0.9N 고질소 내식강의 고온 석출과 변형률 속도에 따른 변형특성 연구)

  • Nam, S.M.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.421-424
    • /
    • 2006
  • High nitrogen steels (HNS) exhibit both high strength and ductility during tensile deformation. In the present study the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel was heat treated at $1000^{\circ}C$ and $1100^{\circ}C$ to produce $Cr_2N$ precipitates in austenite matrix and full austenite microstructures, respectively. Tensile tests of the heat treated specimens were performed at two different strain rates of 0.05/sec and 0.00005/sec. Each tensile curve of the specimens could be well characterized by the the modified Ludwik equation. Plastic deformation of the steel was adequately represented by the four parameters of the modified Ludwik equation. At 0.05/s strain rate, the specimen with the $Cr_2N$ precipitate exhibited higher strength than the full austenite specimen, while the full austenite specimen showed better mechanical properties at 0.00005/s strain rate. It was found that the $Cr_2N$ precipitates influences deformation behavior of the high nitrogen steel significantly.

  • PDF

Effect of Annealing Treatment on Microstructure and Hydrogen Embrittlement of Ti-6Al-4V Alloys Subject to Electrochemical Hydrogen Charging (전기화학적 수소 주입에 의한 Ti-6Al-4V 합금의 미세조직과 수소 취성에 미치는 어닐링 처리의 영향)

  • Ko, S.W.;Lee, J.M.;Kwon, Y.N.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • This paper presents a study on the hydrogen embrittlement of Ti-6Al-4V alloys with different microstructures depending on annealing treatment. They were electrochemically charged with hydrogen and subjected to tensile tests to investigate hydrogen embrittlement behavior. Tensile test results showed that the elongation of Ti-6Al-4V alloy specimens was remarkably decreased with increasing the volume fraction of β phase after hydrogen charging. This is because the β phase with a relatively low diffusivity tends to easily form a hydride at grain boundaries during electrochemical hydrogen charging. After hydrogen charging of the Ti-6Al-4V alloy specimen, it found that silver particles were decorated mostly at the grain boundary, and coarser silver particles were usually formed in the specimen annealed at 950 ℃. Therefore, the specimen having higher β phase fraction shows a poor hydrogen embrittlement resistance because the β phase promotes the formation of coarse hydride during electrochemical hydrogen charging, which leads to a large decrease in ductility.

Improvement of Fatigue Properties in Ultrafine Grained Pure Ti after ECAP(Equal Channel Angular Pressing) (ECAP가공에 의한 초미세립 순수 티타늄의 피로 특성 향상)

  • Lee, Young-In;Park, Jin-Ho;Choi, Deok-Ho;Choi, Myung-Il;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1494-1502
    • /
    • 2005
  • Fatigue life and notch sensitivity of the ultrafine grained pure Ti produced by ECAP was investigated. The ECAPed sample with the true strain of 460$\%$ showed near equiaxed grains with an average size of about 0.3 $\mu$m. After ECAP, the ultimate tensile strength was increased by 60$\%$, while the tensile ductility was decreased by 31$\%$. The ECAPed ultrafine grained pure Ti samples showed high notch sensitivity and significant improvement of high cycle fatigue limit by a factor of 1.67. The ECAPed samples also show high notch sensitivity (K$_{f}$/K$_{t}$ = 0.96). It can be concluded that ECAP is the effective process for achieving high fatigue strength in Ti by increasing its tensile strength through grain refinement

Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium (순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성)

  • Park, Taesung;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.

Further study on improvement on strain concentration in through-diaphragm connection

  • Qin, Ying;Zhang, Jingchen;Shi, Peng;Chen, Yifu;Xu, Yaohan;Shi, Zuozheng
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Hollow structural section (HSS) columns have been increasingly popular due to their structural and architectural merits. However, practical difficulty lies in developing proper connections. The through-diaphragm connections are considered as suitable connection type that is widely adopted in Asian countries. However, the stress concentration occurs at the location connecting through-diaphragm and steel beam. Furthermore, the actual load path from the beam flange is not uniformly transferred to the HSS column as conventionally assumed. In this paper, tensile tests were further conducted on three additional specimens with beam flange plate to evaluate the load versus displacement response. The load-displacement curves, yield and ultimate capacity, ductility ratio were obtained. Furthermore, the strain development at different loading levels was discussed comprehensively. It is shown that the studied connection configuration significantly reduces the stress concentration. Meanwhile, simplified trilinear load-displacement analytical model for specimen under tensile load was presented. Good agreement was found between the theoretical and experimental results.

An Experimental Study on Flexural Behavior of One-Way Concrete Slabs Using Structural Welded Wire-Fabric (구조화 용접철강을 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • 허갑수;윤영호;양지수;김석중;정헌수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 1994
  • Recently the construction of residential buildings faces many difficulties due to the shortage of building materials and works. Simplifying the stage of processing and assembling reinforcing rods and increasing the efficiency of them in reinforced concrete construction can be used to settle the difficulties. In the respect, structural wire-fabric and loop wire-fabric is utilized. The purpose of this study, on condition of being $210kg/cm^2$ concrete strength, is to analyze the structural and flexural properties of one-way concrete slabs by testing with different reinforcing type, tensile steel ratio based with minimum steel ratio, boundary condition and splice length which affect the maximum width of crack and ductility factor. From the test results, the ductility factor is approved that the slabs using deformed bar were much better than that using wire-fabric, and 30D of splice length was appropriate in the slabs as splice length. In the control of the maximum crack width the slabs using wire-fabric and loop wire-fabric were much better than that using deformed bar.

The Effects of Oxygen Content on Microstructure and Mechanical Properties of Ti-Al-Fe-Si-O alloy (산소함량에 따른 Ti-Al-Fe-Si-O 합금의 기계적 특성 및 미세조직 변화)

  • Bae, Jin Joo;Yeom, Jong Taek;Park, Chan Hee;Hong, Jae Keun;Kim, Senog Woong;Yoon, Seog Young;Lee, Sang Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.264-271
    • /
    • 2016
  • The effect of the oxygen content and the annealing temperature on the tensile behavior of the Ti-1.5Al-3Fe-0.25Si-(0.1~0.5)O alloy was investigated. The tensile properties were dependent on the volume fraction of the microstructure constituents, i.e. the equixed ${\alpha}$, equixed ${\beta}$ and lamellar ${\alpha}$. The results showed that the O-partitioned equixed ${\alpha}$ had a much higher strength compared to the equixed ${\beta}$. The strength of the lamellar ${\alpha}$ increased with increasing the annealing temperature because the O content of the lamellar ${\alpha}$ increased. Ti-1.5Al-3Fe-0.25Si-0.3O alloy annealed to $900^{\circ}C$ where the volume fraction of lamellar ${\alpha}$ was the highest exhibited an excellent combination of the strength (1198.5 MPa) and ductility (27.5%). The effect of the lamellar ${\alpha}$ on the ductility was discussed.

Effect of Retained Austenite Content on the Wear Properties of Austempered C/V Graphite Iron (오스템퍼링 처리한 C/V 흑연 주철의 마모에 미치는 잔류 오스테나이트량의 영향에 관한 연구)

  • Joo, Do-Jae;Kim, Hong-Beom;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.340-348
    • /
    • 1998
  • C/V graphite iron has superior tensile strength, toughness and ductility than grey iron, and better castability than ductile iron. The retained austenite content of C/V graphite iron by austempering treatment affects on the mechanical properties such as ductility, hardness, wear properties and machinability. C/V graphite iron alloyed with Cu and Mo were carried out on the austenitizing at $900^{\circ}C$ for 1 hour, and the austempering at $240{\sim}400^{\circ}C$ for 1 hr. And then the mechanical and wear properties of austempered C/V graphite iron have been investigated by the retained austenite content. In consequence, the retained austenite content was found to be 18.2% in austempering temperature at $240^{\circ}C$, and was increased 39.2% at $400^{\circ}C$. Tensile strength and hardness of austempered C/V graphite iron were decreased as the retained austenite content increased, but elongation was increased. The rolling wear loss were increased as the retained austenite content increased. The wear surface of as-cast became to be rough. The microstructure of austempered C/V graphite iron was became to be acicular ausferrite in austempering at $240^{\circ}C$, and feathery ausferrite at $400^{\circ}C$.

  • PDF

High Fatigue Life and Tensile Strength Characteristics of Low Activation Ferritic Steel(JLE-1) by TIG Welding (TIG용접한 저방사화 페라이트강(JLF-1)의 고온강도 및 피로수명특성)

  • Yoon, H.K.;Lee, S.P.;Kim, S.W.;Park, W.J.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.181-186
    • /
    • 2001
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), low activation ferritic steel, is one of the promising candidate materials fer fusion reactor applications. High temperature fatigue life and tensile strength of JLF-1 steel and its TIG welded joints were investigated at the room temperature and $400^{\circ}C$. The strength of base metal (JLF-1) is in between those of weld metal and the HAZ. When the test temperature was increased from room temperature to $400^{\circ}C$, both strength and ductility decreased for base metal, weld metal and the HAZ. The longitudinal specimens of base metal showed similar strength and ductility compared with those of the transverse specimens at room temperature and $400^{\circ}C$. Little anisotropy was observed in the JLF-1 steel base metal in terms of rolling direction. Fatigue limit of weld metal which was obtained from cross-weld specimen is 495MPa. Thus, the weld metal showed the higher fatigue limit than those of base metal at both room temperature and $400^{\circ}C$. Little anisotropy of fatigue properties was observed for JLF-1 base metal in terms of rolling direction. When the test temperature was increased from room temperature to $400^{\circ}C$, the fatigue limit of both base metal and weld metal decreased substantially.

  • PDF

A study on the applicability of newly developed stainless steel for weight reduction of carbody of intermodal tram (인터모달 트램 차체 경량화를 위한 신개발 스테인레스 강재 적용성 연구)

  • Seo, Sung-il;Kim, Jeong-guk;Jung, Hyun-seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.457-463
    • /
    • 2016
  • The newly developed super ductile duplex stainless steel (SDSS) has good strength and ductility, and it can be used to reduce weight and improve the fabrication efficiency of a carbody of a rolling stock. In this study, spot weldability tests were conducted to take advantage of SDDSS in a carbody for an intermodal tram. Specimens of various thickness (0.4 to 5.0 mm) were prepared to find the proper welding conditions, and tensile load tests were conducted to evaluate the tensile-shear strength of spot welded joints. Then, nugget diameters were measured to verify the quality. The tensile-shear strength was found to be proportional to the heat parameter. It was verified that the tensile-shear strengths and nugget sizes of the joints satisfy the standard requirements. The overall weldability tests confirmed that SDDSS can be used effectively for the carbody of an intermodal tram.