• Title/Summary/Keyword: Tensile bond strength

Search Result 478, Processing Time 0.024 seconds

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Effect of Shear Key and Edge Length of Near Surface-Mounted FRP Plate in Concrete (콘크리트에 표면매입 보강된 FRP판의 전단키 및 연단거리 효과)

  • Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • This paper presents a bond test to find the effect of shear key and edge length from the bonded FRP in near surface-mounted(NSM) retrofit using FRP plate. Main parameters in the test are the location and size of shear key and the edge length. For the test, 10 specimens were made by embedding FRP plate of $3.6mm{\times}16mm$ into $400mm{\times}200(300)mm{\times}400mm$ concrete block and fixing it by using epoxy. Tensile load was applied to the FRP of the specimens until failure and was recorded at each load increase. In addition, the bond slip and elongation of FRP were measured during the test. From the test, it was found that the further the shear key located from the loading, the higher strength we could get. The bond strength inversely depended on the size of shear key. Especially, when the size of shear key was to be lagger than certain size, the bond strength decreased to very low value; even less than that of the case without shear key. The bond strength somewhat increased corresponding to the increase of edge length from the bonded end of FRP to loading in spite of same bond length. The bond-slip between FRP and concrete governed overall deformation in the bond test of NSM FRP so that the effect of excessive slip is necessary to be considered in the design.

Tensile Adhesive Chracteristics of Waterproofing System for Concrete Bridge Decks (교량 바닥판 조건에 따른 교면방수 시스템의 인장접착 특성)

  • Lee, Byung-Duck;Shim, Jae-Won;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.15-23
    • /
    • 2002
  • The waterproofing system's performance is known to show a determing by complex interaction of material factors, design details, and the quality of construction, and the waterproofing integrity of waterproofing membranes is determined by the bond to the deck and the amount of damage to the waterproofing membrane. In this research, the basic properties of waterproofing membranes on market and the tensile adhesive chracteristics of waterproofing systems of concrete bridge deck have also been investigated in the view of the damages frequently reported from job site. For the tensile adhesive strength of sheet waterproofing membranes, the results after asphalt concrete paving tends to increase more than before those. The results of the liquid waterproofing membranes are upside-down, and the more concrete has strength, the more strength of tensile adhesive increase. The ambient temperature of asphalt concrete when application of the waterproofing membrane has considerable influence on the performance of waterproofing system. As described above, waterproofing system can be influenced by several factors. If they are not considered under construction, the overlooking will cause the damages of pavement and waterproofing system after traffic opening.

  • PDF

Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core

  • Mosharraf, Ramin;Yazdi, Najmeh Baghaei
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • PURPOSE. Debonding of a composite resin core of the fiber post often occurs at the interface between these two materials. The aim of this study was to evaluate the effects of different surface treatment methods on bond strength between fiber posts and composite core. MATERIALS AND METHODS. Sixty-four fiber posts were picked in two groups (Hetco and Exacto). Each group was further divided into four subgroups using different surface treatments: 1) silanization; 2) sandblasting; 3) Treatment with 24% $H_2O_2$, and 4) no treatment (control group). A cylindrical plexiglass matrix was placed around the post and filled with the core resin composite. Specimens were stored in 5000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$. Tensile bond strength (TBS) test and evaluation using stereomicroscope were performed on the specimen and the data were analyzed using two-way ANOVA, Post Hoc Scheffe tests and Fisher's Exact Test (${\alpha}$=.05). RESULTS. There was a significant difference between the effect of different surface treatments on TBS ($P$ <.001) but different brands of post ($P$=.743) and interaction between the brand of post and surface treatment ($P$=.922) had no significant effect on TBS. Both silanization and sandblasting improved the bonding strength of fiber posts to composite resin core, but there were not any significant differences between these groups and control group. CONCLUSION. There was not any significant difference between two brands of fiber posts that had been used in this study. Although silanization and sandblasting can improve the TBS, there was not any significant differences between surface treatments used.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement

  • Mosharraf, Ramin;Ranjbarian, Parisa
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.126-132
    • /
    • 2013
  • PURPOSE. Post surface conditioning is necessary to expose the glass fibers to enable bonding between fiber post and resin cement. The purpose of the present study was to evaluate the effect of different surface conditioning on tensile bond strength (TBS) of a glass fiber reinforced post to resin cement. MATERIALS AND METHODS. In this in vitro study, 40 extracted single canal central incisors were endodontically treated and post spaces were prepared. The teeth were divided into four groups according to the methods of post surface treatment (n=10): 1) Silanization after etching with 20% $H_2O_2$, 2) Silanization after airborne-particle abrasion, 3) Silanization, and 4) No conditioning (Control). Adhesive resin cement (Panavia F 2.0) was used for cementation of the fiber posts to the root canal dentin. Three slices of 3 mm thick were obtained from each root. A universal testing machine was used with a cross-head speed of 1 mm/minute for performing the push-out tests. Two-way ANOVA and Tukey post hoc tests were used for analyzing data (${\alpha}$=0.05). RESULTS. It is revealed that different surface treatments and root dentin regions had significant effects on TBS, but the interaction between surface treatments and root canal regions had no significant effect on TBS. There was significant difference among $H_2O_2$ + Silane Group and other three groups. CONCLUSION. There were significant differences among the mean TBS values of different surface treatments. Application of hydrogen peroxide before silanization increased the bond strength between resin cements and fiber posts. The mean TBS mean values was significantly greater in the coronal region of root canal than the middle and apical thirds.

Analysis of Effective Elastic Modulus and Interfacial Bond Strength of Aluminum Borate Whisker Reinforced Mg Matrix Composite by Using Three Dimensional Unit Cell Model (3차원 Unit Cell 모델을 이용한 알루미늄 보레이트 휘스커 강화 Mg 복합재료의 유효 탄성계수 및 계면강도의 분석)

  • Son, Jae Hyoung;Lee, Wook Jin;Park, Yong Ha;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.469-475
    • /
    • 2010
  • In this study, the interfacial bond strength of a squeeze infiltrated $Al_{18}B_{4}O_{33}$/AS52 Mg composite was investigated by using a finite element method. Three types of Mg composites with volume fractions of 15, 25 and 35% were fabricated. Three-dimensional models of the composite were developed by using a unit cell model in order to determine the effective elastic modulus of the metal matrix composite and the interfacial bond strength between the whisker and magnesium matrix. After modeling, numerical results were compared with the experimental tensile test results of $Al_{18}B_{4}O_{33}$/AS52 Mg composites. The results showed that the effective modulus of the composite strongly depended on the interfacial strength between the matrix and reinforcement. Based on the numerical and experimental findings, it was found that the strong interfacial bond was achieved by the interfacial reaction product of 30 nm thick MgO, which led to an improvement in the mechanical properties of the $Al_{18}B_{4}O_{33}$/AS52 Mg composites.

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

Evaluation of tensile properties of SFRC for TBM tunnel segment (TBM 터널 세그먼트용 강섬유보강 콘크리트의 인장특성 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.247-260
    • /
    • 2012
  • In order to reduce the amount of steel reinforcements in TBM tunnel segments, the use of Steel Fiber Reinforced Concrete(SFRC) is being tried. The steel fibers with higher aspect ratio than that used in tunnel shotcrete are preferred to compensate the deficiency in tensile strength of the segments. In this study, the tensile properties of SFRC with aspect ratio of steel fibers equal to 80 were evaluated through flexural test and Double Punch Test. In the results of flexural test, flexural strengths of the SFRC were increased about 30%~150% thanks to bond of steel fibers used to concrete and could be properly predicted by the equation proposed by Oh(2008). There was a great difference in the estimated direct tensile strengths of the SFRC by the equations presented in ACI and RILEM. It was found that the Double Punch Test could be suitable methodology to estimate the direct tensile strength presented in RILEM of the SFRC.

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.