• Title/Summary/Keyword: Tensile Stress Test

Search Result 1,033, Processing Time 0.025 seconds

An Investigation on the Ultimate Strength of Duplex Stainless Steel (STS329FLD) Bolted Connections with Two Bolts (2행 1열 듀플렉스계 스테인리스강(STS329FLD) 볼트접합부의 최대내력 조사)

  • An, Sung-Ho;Kim, Geun-Young;Hwang, Bo-Kyung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, the use of duplex stainless steel which with a two-phase microstructure (equal mixture of ferrite and austenite) has been increased in a variety of industrial fields due to higher strength leading to weight saving, greater corrosion resistance(particularly, stress corrosion cracking) and lower price. However, currently, stainless steels are not included in the structural materials of Korean Building Code and corresponding design standards are not specified. In this paper, experimental studies have been performed to investigate the structural behaviors of duplex stainless steel (STS329FLD) bolted connection with two bolts for providing the design data. Main variables are shear connection type (single shear and double shear) and end distance parallel to the direction of applied force. Fracture modes at the final step of test were classified into typical block shear fracture, tensile fracture and curling. Curling occurrence in single shear connection led to ultimate strength drop by up to 20%. Test strengths were compared with those by current design specifications such as AISC/AISI/KBC, EC3 and AIJ and proposed equations by existing studies. For specimens with no curling, Clement & Teh's equation considering the active shear plane provided a higher strength estimation accurancy and for specimens with curling, Kim & Lim's equation considering strength reduction by curling was also overly unconservative to predict the ultimate strength of curled connections.

Damage Study on the Mechanical Fastening in Laminated Composites (복합적층판(復合積層板)의 기계적(機械的) 체결부(締結部)에 관한 파손연구(破損硏究))

  • Kwan-Hyung,Song
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.58-66
    • /
    • 1990
  • A series of test was performed measuring the failure strength and failure mode of Gr/Pi, $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate containing a single pin loaded hole. The finite element method is applied to calculate the stress distribution in the laminates, then the failure load and the failure mode were predicted by means of the characteristic length. 12 different geometric variations were developed to analyze the effects of the ratio of specimen width to hole diameter (W/d) and ratio of edge distance to hole diameter (L/d). X-Ray of NDE methods were utilized in finding out the initial defects, damage and the fracture mechanism, and SEM(Scanning Electron Microscopes) was used the evaluation of the fracture mechanism and crack propagation around hole under tension pin loading. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate are found to be most sensitive to W/d but not so influenced by L/d. The failure mode and tensile strength predicted by the model show agreement with experiment data for pin loading bolted jointed test except range of $L/d{\leqq}3$.

  • PDF

Flexural Analysis of RC Beam Considering Autogenous Shrinkage Model (자기수축 모델을 고려한 철근콘크리트 보의 휨 거동 해석)

  • Yoo Sung-Won;Soh Yang-Sub;Cho Min-Jung;Koh Kyung-Taek;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.621-628
    • /
    • 2005
  • Recently, it is noticed that autogenous shrinkage of high-performance concrete causes early crack in high performance concrete structures. The purpose of the present study is to derive a realistic equation to estimate the autogenous shrinkage of high performance concrete and to apply to structural analysis. For this purpose, several series of concrete specimens have been tested. When water-binder ratio is fixed to $30\%$, major test variables were the type and contents of mineral admixture. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased with the autogenous shrinkage. A prediction equation to estimate the autogenous shrinkage of HPC with mineral admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral admixture. The finite element program developed in this study provides the useful tool for the flexural analysis including the autogenous shrinkage model. By this program, we know that the tensile stress considering the autogenous shrinkage of reinforced concrete structures increase $20\~27\%$ than that not considering.

The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments (염분분사환경에서 냉연 304 스테인레스강의 부식거동)

  • Chiang, M.F.;Young, M.C.;Huang, J.Y.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2011
  • Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at $85^{\circ}C$ and $200^{\circ}C$ with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at $85^{\circ}C$ for 2000 hours differed greatly from those at $200^{\circ}C$. The weight loss of NSS specimens was not significant at $85^{\circ}C$ but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at $85^{\circ}C$ and $200^{\circ}C$ are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

A Study on Safety and Performance Evaluation to Shaver Type Rope Cutter for Ships (선박용 Shaver Type 로프절단장치의 안전성 및 성능평가에 관한 연구)

  • Kang, Sung-Hoon;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.632-638
    • /
    • 2022
  • As Korean coastal activity is high, the incidence of accidents caused by marine waste is extensive. An accident in which marine floating waste ropes and fishing nets are wound around the propeller of a sailing ship is termed "Rope wrapped accident." To prevent such accidents, this study applied the Finite Element Method (F.E.M.) for performance evaluation of the shaver type cutter, commercialized in Korea, through a structural safety review and water tank test. The results demonstrate that all parts constituting the rope cutter were damaged before reaching 0.5s, and the safety factor of each part was found to be at least 2 based on the maximum stress generated compared to the tensile strength. In the basin test, the cutting process of the shaver type rope cutter was reviewed, and the installation angle was set for each case considering that the rope floating in the sea actually enters at various angles. Consequently, as it was successful at cutting in all the cases, it can be concluded that there will be no problem in cutting the rope regardless of the mounted angle of the cutting blade.

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Shrinkage Properties of High Performance Concrete Depending on Specimen Size and Constraint of Reinforcing Bar (공시체 크기 변화 및 철근구속에 따른 고성능콘크리트의 수축 특성)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.13-19
    • /
    • 2006
  • This paper reports the test results for shrinkage properties of low shrinkage high performance concrete developed by the authors depending on specimen size and constraint of reinforcing bar. As properties in fresh concrete low shrinkage high performance concrete(LSHPC) combined with expansive additives and shrinkage reducing admixture resulted in increase SP dosage due to loss of fluidity compared with that of control mixture concrete, while the dosage of AE agent was decreased. LSHPC exhibited higher compressive and tensile strength than control mixture concrete. For the effect of specimen size, an increase in specimen size led to a reduction of drying shrinkage. However, it was found that the autogenous shrinkage was not affected by the specimen size and measuring method. For constraint condition, an increase in the ratio of reinforcing bar caused the slight reduction in the strain of reinforcing bar, while it increased the autogenous shrinkage stress. It was seen that LSHPC was effective to reduce autogenous shrinkage by as much as 70% compared with control mixture high performance concrete.

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.