• Title/Summary/Keyword: Tensile Stress

Search Result 2,794, Processing Time 0.039 seconds

Relations between tensile stresses and critical current densities of coated conductors

  • Yoo, Ja-Eun;Youm, Do-Jun
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.136-139
    • /
    • 2000
  • The relations between tensile stresses and critical current densities (J$_c$) of coated conductors were measured. Around 320 MPa of tensile stress, the critical current densities of coated conductor fabricated on pure Ni tape were reduced to zero at 77K, where J$_c$ for zero stress was order of 10$^5$A/cm. The critical tensile stress was much enhanced for the coated conductors fabricated on NiCr alloy tapes. However fabrication conditions for the growth on such alloys are much different from those on the pure Ni and it was not easy to get good textures and large critical currents. The detailed fabrication methods on those alloys will be presented.

  • PDF

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Kikuchi, Hiroaki;Ara, Katsuyuki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.427-430
    • /
    • 2011
  • The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

mechanical properties of Al-Cu-Zr alloy parts by superplastic forming (Al-Cu-Zr 합금 초소성 성형품의 기계적 성질)

  • 이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

EVALUATION OF DYNAMIC TENSILE CHARACTERISTICS OF POLYPROPYLENE WITH TEMPERATURE VARIATION

  • Kim, J.S.;Huh, H.;Lee, K.W.;Ha, D.Y.;Yeo, T.J.;Park, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.571-577
    • /
    • 2006
  • This paper deals with dynamic tensile characteristics for the polypropylene used in an IP(Instrument Panel). The polypropylene is adopted in the dash board of a car, especially PAB(Passenger Air Bag) module. Its dynamic tensile characteristics are important because the PAB module undergoes high speed deformation during the airbag expansion. Since the operating temperature of a car varies from $-40^{\circ}C$ to $90^{\circ}C$ according to the specification, the dynamic tensile tests are performed at a low temperature($-30^{\circ}C$), the room temperature($21^{\circ}C$) and a high temperature($85^{\circ}C$). The tensile tests are carried out at strain rates of six intervals ranged from 0.001/sec to 100/sec in order to obtain the strain rate sensitivity. The flow stress decreases at the high temperature while the strain rate sensitivity increases. Tensile tests of polymers are rather tricky since polymer does not elongate uniformly right after the onset of yielding unlike the conventional steel. A new method is suggested to obtain the stress-strain curve accurately. A true stress-strain curve was estimated from modification of the nominal stress-strain curves obtained from the experiment. The modification was carried out with the help of an optimization scheme accompanied with finite element analysis of the tensile test with a special specimen. The optimization method provided excellent true stress-strain curves by enforcing the load response coincident with the experimental result. The material properties obtained from this paper will be useful to simulate the airbag expansion at the normal and harsh operating conditions.

Design Methodology of Transverse Post-Tensioning for Prestressed Concrete Pavements (프리스트레스트 콘크리트 포장의 횡방향 긴장 설계방안)

  • Kim, Seong-Min;Yoon, Dong-Joo;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.269-279
    • /
    • 2008
  • This study was conducted to develop the design methodology of transverse post-tensioning for the prestressed concrete pavement (PSCP). The transverse stress distribution was analyzed when the transverse anchor spacing changed. The tensile stress distribution in the PSCP slab due to the environmental and vehicle loads was also investigated. The reasonable methods were discussed to determine the design loads including environmental and vehicle loads and the PSCP allowable tensile stress used for the basis of the selection of the stress application amount from the tensioning. The results of this study showed that as the transverse anchor spacing increased, the range of the stress loss became larger and the stress loss was significant near the shoulder. The design of the transverse post-tensioning can be performed by obtaining the stresses under the design loads and by considering the allowable tensile stress; however, the tensile stresses at different locations such as the shoulder, wheel pass, and slab interior should also be checked and kept below the allowable tensile stress.

  • PDF

Analysis of the Effects of Laser Shock Peening under Initial Tensile Residual Stress Using Numerical Analysis Method (수치해석기법을 이용한 초기 인장잔류응력에 대한 레이저 충격 피닝 효과 분석)

  • Kim, Juhee;Lee, Jongwoo;Yoo, Samhyeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.608-619
    • /
    • 2017
  • In this paper, the effects of parameters related to the residual stress induced due to laser shock peening process to determine mitigation of the initial tensile residual stresses are discussed, such as the maximum pressure, pressure pulse duration, laser spot size and number of laser shots. In order to estimate the influence of the initial tensile residual stresses, which is generated by welding in 35CD4 50HRC steel alloy, the initial condition option was employed in the finite element code. It is found that $2{\times}HEL$ maximum pressure and a certain range of the pressure pulse duration time can produce maximum mitigation effects near the surface and depth, regardless of the magnitudes of tensile residual stess. But plastically affected depth increase with increasing maximum pressure and pressure pulse duration time. For the laser spot size, maximum compressive residual stresses have almost constant values. But LSP is more effective with increasing the magnitudes of tensile residual stress. For the multiple LSP, magnitudes of compressive residual stresses and plastically affected depths are found to increase with increasing number of laser shots, but the effect is less pronounced for more laser shots. And to conclude, even though the initial tensile residual stresses such as weld residual stress field are existed, LSP is enough to make the surface and depth reinforcement effects.

Tensile Properties of One-component Silicon Sealants by Heat Deterioration (1성분형 실리콘계 실리콘의 열 열화에 대한 인장 성능 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Miyauchi, Kaori
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.173-174
    • /
    • 2013
  • In this study, the tensile properties of sealants by heat deterioration were measured and analysed to gather the basic data of sealant because these studies do not have been investigated in Korea. Most general one-component silicone sealants were used and test specimen was I-type. The test parameters are sealant types which have different density and heat deterioration time in 80℃. As a result, the rat of reduction in area by heat deterioration was considerable increased at SR-A compared with SR-B. The tensile properties by heat deterioration decreased at SR-A because the specimen by deterioration occurred adhesive failure before tensile test. However, SR-B specimen was increased at maximum tensile stress but decreased at elongation in maximum tensile stress. Also, Maximum principal stress was measured at the edge of specimen by FEM simulation in order to find out failure points.

  • PDF

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

ESTIMATION OF RESIDUAL STRESS IN CYLINDER HEAD

  • KIM B.;EGNER-WALTER A.;CHANG H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Residual stresses are introduced in aluminum cylinder head during quenching at the end of the T6 heat treatment process. Tensile residual stress resulted from quenching is detrimental to fatigue behavior of a cylinder head when it is overlapped with stresses of engine operation load. Quenching simulation has been performed to assess the distribution of residual stress in the cylinder head. Analysis revealed that in-homogeneous temperature distribution led to high tensile residual stress at the foot of the long intake port, where high stresses of engine operation load are expected. Measurements of residual stress have been followed and compared with the calculated results. Results successfully proved that high tensile residual stress, which was large enough to accelerate fatigue failure of the cylinder head, are formed during quenching process at the end of heat treatment at the same critical position. Effect of quenching parameters on the distribution of residual stress in cylinder head has been investigated by choosing different combination of heat treatment parameters. It was demonstrated that changes of quenching parameters led to more homogeneous temperature distribution during cooling and could reduce tensile residual stress at the critical region of the cylinder head used in this study.