• 제목/요약/키워드: Tensile Strength

검색결과 7,619건 처리시간 0.036초

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

연성 의치상 이장재의 인장결합 강도와 탄성계수에 관한 연구 (THE TENSILE BOND STRENGTH AND ELASTIC MODULUS OF THE SOFT DENTURE LINING MATERIALS)

  • 김병진;고준원;이용근;조혜원
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.458-469
    • /
    • 1997
  • This study was to compare the tensile bond strength and flexibility of four different soft liners(Coe-Soft, Soft Relining, Soft-Liner, Dura Base Soft) before & after thermocycling. Each soft liner was bonded to denture base resin block, and measured the tensile bond strength and modulus of elasticity using Universal testing machine. The mean value of tensile bond strength and modulus of elasticity for each experimental groups were statistically processed by SPSS(Statistical Package of Social Science). The obtained results were as follows : 1. Dura Base Soft had the highest tensile bond strength and Coe-Soft had the lowest tensile bond strength. 2. Coe-Soft had the lowest modulus of elasticity, and Dura Base Soft had the highest modulus of elasticity. 3. Thermocycling had no effects on the tensile bond strength and modulus of elasticity of all the soft liners. 4. The failure modes of Coe-Soft, Soft Relining, Soft Liner were mainly cohesive failure, and that of Dura Base Soft were mainly adhesive failure.

  • PDF

고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰 (Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene)

  • 한기선;이화형
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

온도 및 습도가 Glass-ionomer cement와 Composite resin의 접착강도에 미치는 변화에 관한 연구 (A STUDY ON THE EFFECTS OF THE TEMPERATURE AND HUMIDITY TO THE TENSILE BOND STRENGTH BETWEEN GLASS-IONOMER CEMENT AND COMPOSITE RESIN)

  • 정인교;민병순
    • Restorative Dentistry and Endodontics
    • /
    • 제16권1호
    • /
    • pp.60-73
    • /
    • 1991
  • The purpose of this study is to evaluate the effects of etching time, environmental temperature and humidity on the adhesion of composite resin to glass-ionomer cement. Two chemical cure composite resins (Clearfil F II and Microrest AP) and two glass-ionomer cements (Fuji ionomer Type I and KET AC-CEM) were used as the experimental materials. The experiment is performed in 3 stages: The first stage is to bond composite resins to glass-ionomer cements, and the surface was not etched, and etched for 20 seconds, 40 seconds, and 60 seconds. Then specimens are stored in distilled water at $37^{\circ}C$ for 24 hours to measure tensile strength. The second stage is to choose the one group that had the highest tensile strength from the first stage and prepare two experimental groups: One group with composite resin bonded to glass-ionomer cement without etching and bonding agent application and the other with composite resin bonded to glass-ionomer cement with etching but without any bonding agent application. The specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and tensile strength is measured. The third stage is to choose group that had the highest tensile strength from the first stage experiment, and bond composite resin to glass-ionomer cement at $24^{\circ}C$ 44%, $30^{\circ}C$ 44%, $30^{\circ}C$ 80%, and $32^{\circ}C$ 92%. The storage time of specimens is to bond immediately after storage, then changed to 30 sec., 60 sec., and 120 sec.. Specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and their tensile strength are measured again. The following results were obtained: 1. As the etching time increases, the tensile bond strength between glass-ionomer cement and composite resin increase, and the tensile bond strength is the highest when acid etched for 60 minutes (P < 0.05). 2. After acid etching for 60 minutes, the tensile strength of the group with bonding agent was stronger than that without bonding agent application (P < 0.05). 3. The tensile strength of Clearfil F II was stronger than that of Microrest AP. 4. It was observed that the tensile bond strength is not affected by different storage time with different temperature and humidity. 5. As the humidity was increased, the tensile bond strength between glass-ionomer cement and composite resin decreased (P < 0.05).

  • PDF

압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가 (Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level)

  • 박기준;김원우;박정준;문재흠;김성욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.31-37
    • /
    • 2018
  • 이 논문은 압축강도 수준(100, 140, 180 MPa급)에 따른 HPFRCC의 동적충격 인장강도를 평가하였다. 먼저 100, 140, 180 MPa급 HPFRCC의 압축응력-변형률 관계를 분석한 결과 압축강도는 각각 112, 150, 202 MPa로 나타났으며, 압축강도가 높아짐에 따라 탄성계수도 증가하는 경향을 나타내었다. 100, 140, 180 MPa급 HPFRCC의 정적 인장강도는 각각 10.7, 11.5, 16.5 MPa로 나타났으며, 압축강도가 높아질수록 인장강도도 증가하는 경향을 나타내었다. 반면 100 및 140 MPa급 HPFRCC에서의 인장강도 및 에너지 흡수능력은 압축강도 수준에 따라 큰 차이를 보이지 않았다. 이는 시험체의 규격 및 강섬유의 배열에 영향을 받은 것으로 판단된다. HPFRCC의 동적충격 인장강도를 평가한 결과, 변형률 속도가 10-1/s에서 150/s로 증가할수록 모든 HPFRCC의 인장강도와 동적증가계수는 증가하는 경향을 보였다. 한편 동일한 범위의 변형률 속도에서 HPFRCC의 압축강도가 낮을수록 인장강도에 대한 DIF가 높게 측정되어 효율적인 측면에서는 100 MPa급 HPFRCC가 가장 우수한 것으로 나타났다. 따라서 높은 수준의 인장성능이 요구되는 경우 높은 압축강도를 가지는 HPFRCC를 사용하는 것이 유리하며, 폭발과 같은 고속변형률 속도에서 보다 효율적인 접근을 위해서는 목표 압축강도에 근접한 HPFRCC를 사용하는 것이 바람직한 것으로 판단된다.

섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구 (Tensile Strength Characteristics of Cement Paste Mixed with Fibers)

  • 박성식;호우 야오롱
    • 한국지반공학회논문집
    • /
    • 제31권3호
    • /
    • pp.5-16
    • /
    • 2015
  • 본 연구에서는 토사 또는 암반 틈새에 주입하는 그라우팅(시멘트 페이스트)에 섬유를 혼합할 경우 발생하는 인장강도의 특성을 연구하였다. 이와 같이 시멘트로 고결된 토목재료의 인장강도 평가에는 간접적인 방법으로 인장강도를 평가하는 쪼갬인장시험을 주로 사용하고 있다. 하지만, 본 연구에서는 강섬유 또는 PVA 섬유를 중량비로 0%, 0.5%, 또는 1% 혼합한 시멘트 페이스트 내에 유압 실린더를 내장한 직경 15cm, 높이 30cm의 공시체를 제작한 다음 공시체 내부에서 직접 인장력을 가하는 직접인장시험법을 개발하였다. 또한 동일한 재료로 직경 5cm, 높이 10cm 공시체를 만들어 쪼갬인장시험을 실시하여 인장강도 시험방법에 따른 시멘트 페이스트의 인장강도를 비교, 평가하였다. 각각의 공시체는 대기 중에서 7일 또는 28일 양생한 다음 인장시험을 실시하였다. 시험방법에 따른 인장강도는 내장형 실린더를 이용한 직접인장시험법이 쪼갬인장시험법 보다 96%-290% 정도 높은 값을 보였다. 한편 두 종류의 인장시험법에 대한 3차원 유한요소해석을 실시하였으며, 실험 결과와 유사하게 내장형 실린더 인장시험법이 3배 정도 높은 인장강도를 보였다. 섬유 혼합량이 1%까지 증가함에 따라 인장강도는 시험방법에 관계없이 7일 양생한 공시체는 119%-190%, 28일 양생한 공시체는 23%-131%까지 증가하였으며, 양생일수가 7일에서 28일로 증가함에 따라 인장강도는 대부분 감소하는 경향을 보였다. 대부분의 경우 강섬유가 포함된 경우보다 PVA 섬유가 포함된 경우에 약 14%-38% 정도 높은 인장강도를 보였다.

인장-전단하중을 받는 점 용접재의 변형률 분포 특성 평가 (Evaluation on the Properties of Strain Distribution of the sopt welding specimen under tensile-shear load)

  • 김덕중
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.113-118
    • /
    • 1999
  • In order to evaluate strength of spot welded joint, at first it is importent that we should know strain distribution near nugget zone. During loading, in HAZ, compressive strain increase with Increase of load, but in nugget zone tensile strain increase. During unloading, on the other hand, even through the decreases, the strain variation is not almost appeared in nugget zone and HAZ. In nugget boundary zone, the strain range increases continuously along with load increase on outer surface, but the strain increases continunously and decreases rapidly beyond yield strength on inner surface. In this paper, strain distribution are measured in inner and outer surface with variation of thickness and load under tensile-shear load. Tensile-shear strength increased as with increase of specimen thickness. As for thickness increase rates are 25%, 50%, 100%, and 150%, tensile-shear strength in crease rates are 40%, 81%, 130% and 228%.

  • PDF

Effect of Plasma Polymerization Coating of CNTs on the Tensile Strength of Pei/Cnt Composites

  • Song, K.C.;Yoon, T.H.
    • 접착 및 계면
    • /
    • 제6권4호
    • /
    • pp.7-11
    • /
    • 2005
  • Multi-walled carbon nanotubes (CNTs), which were purified by etching in 25% $H_2SO_4/HNO_3$ solution at $60^{\circ}C$ for 2 h, were modified via plasma polymerization coating of acrylic acid, allylamine or acetylene, and then utilized to prepare PEI/CNT composites. First, plasma polymerization conditions were optimized by measuring the solvent resistance of coatings in THF, chloroform and NMP, and the tensile strength of PEI/CNT (0.5%) composites as a function of plasma power (20~50 W) and monomer pressure (20~50 mTorr). The tensile strength of PEI/CNT composites was further evaluated as a function of CNT loading (0.2, 0.5 and 1%). Finally, FT-IR was utilized to provide a better understanding of the improved tensile properties of PEI/CNT composites via plasma polymerization coating of CNTs. Plasma polymerization of acrylic acid greatly enhanced the tensile strength of PEI/CNT composites, as did allylamine but to a lesser degree, while acetylene plasma polymerization coating decreased tensile strength.

  • PDF

A new approach for measurement of anisotropic tensile strength of concrete

  • Sarfarazi, Vahab;Faridi, Hamid R.;Haeri, Hadi;Schubert, Wulf
    • Advances in concrete construction
    • /
    • 제3권4호
    • /
    • pp.269-282
    • /
    • 2015
  • In this paper, a compression to tensile load converter device was developed to determine the anisotropic tensile strength of concrete. The samples were made from a mixture of water, fine sand and cement, respectively. Concrete samples with a hole at its center was prepared and subjected to tensile loading using the compression to tensile load converter device. A hydraulic load cell applied compressive loading to converter device with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The samples have three different configurations related to loading axis; 0, $45^{\circ}$, $-45^{\circ}$. A series of finite element analysis were done to analyze the effect of hole diameter on stress concentration of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, Brazilian test and three point loading test were also performed to compare the results from the three methods. Results obtained by this device were quite encouraging and show that the tensile strengths of concrete were similar in different directions because of the homogeneity of bonding between the concrete materials. Also, the indirect tensile strength was clearly lower than the Brazilian test strength and three point loading test.