• Title/Summary/Keyword: Temporary struts

Search Result 13, Processing Time 0.021 seconds

Development of Struts for Soil Shuttering as a Permanent System (구조물 겸용 흙막이 스트러트 공법)

  • Hong Won-ki;Kim Sun-kuk;Kim Hee-Chul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.3 s.19
    • /
    • pp.71-78
    • /
    • 2004
  • In conventional method of supporting soil shuttering wall during excavation a system of struts and wales to provide cross-lot bracing is common in trench excavations and other excavations of limited width. This method, however, becomes difficult and costly to be adopted for large excavations since heavily braced structural systems are required. Another expensive and unsafe situations are expected when temporary struts must be removed for the construction of underground structures. This paper introduces innovative strut systems which can be used as permanent underground structures after its role as brace system to resist earth pressure during excavation phase. Underground structural system suggested from architect is checked against the soil lated pressures before the analysis of stresses developed from gravity loads. In this technology, named SPS(Struts as Permanent System), retaining wall is installed first and excavation proceeds until the first level of bracing is reached. Braces used as struts during excavation will serve as permanent girders when buildings are in operation. Simultaneous construction of underground and superstructure can proceeds when excavation ends with the last level of braces being installed. In this paper, construction sequence and the calculation concept are explained in detail with some photo illustrations. SPS technology was applied to three selected buildings. One of them was completed and two others are being constructed Many sensors were installed to monitor the behavior of retaining wall, braces as column in terms of stress change and displacement. Adjacent ground movement was also obtained. These projects demonstrate that SPS technology contributes to the speed as well as the economy involved in construction.

A Case Study on the Self-Supported Earth Retaining Wall with Different Formations (다양한 형태의 2열 자립식 흙막이 공법 시공사례 연구)

  • Sim, Jae-Uk;Kim, Kyoung-Chul;Son, Sung-Gon;Park, Young-Jin;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1039-1049
    • /
    • 2010
  • Excavation support systems are the temporary earth retaining structures that can prevent the lateral movement of soils. The systems are initially performed before other construction operations and have a great impact on the entire construction period. The temporary support system in Korea have been carried out generally along with installing supports, which are struts, tiebacks, and rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system (referred to as the SSR, New Construction Technology No. 533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

A Case Study on the Self-Supported earth Retaining wall (2열 자립식 흙막이 공법(SSR) 시공사례 연구)

  • Lee, Gyu-Dong;Son, Sung-Gon;Sim, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.85-86
    • /
    • 2011
  • The temporary support system in Korea have been carried out generally along with installing supports, which are struts, anchors, rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system(referred to as the SSR, NET No.533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

A Study on Efficient Deconstruction of Supporters with Response Ratio (응답비를 고려한 효율적인 버팀보 해체방안에 관한연구)

  • Choi, Jung-Youl;Park, Sang-Wook;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.469-475
    • /
    • 2022
  • As the recent structure construction is constructed as a large-scale and deep underground excavation in close proximity to the building, the installation of retaining wall and supporters (Struts) has become complicated, and the number of supporters to avoid interference of the structural slab has increased. This construction process becomes a factor that causes an increase in construction joints of a structure, leakage and an increase in wall cracks. In addition, this reduced the durability and workability of the structure and led to an increase in the construction period. This study planned to dismantle the two struts simultaneously as a plan to reduce the construction joints, and corrected the earth pressure by assuming the reaction force value by the initial earth pressure and the measured data as the response ratio. After recalculating the corrected earth pressure through the iterative trial method, it was verified by numerical analysis that simultaneous disassembly of the two struts was possible. As a result of numerical analysis applying the final corrected earth pressure, the measured value for the design reaction force was found to be up to 197%. It was analyzed that this was due to the effect of grouting on the ground and some underestimation of the ground characteristics during design. Based on the result of calculating the corrected earth pressure in consideration of the response ratio performed in this study, it was proved analytically that the improvement of the brace dismantling process is possible. In addition, it was considered that the overall construction period could be shortened by reducing cracks due to leakage and improving workability by reducing construction joints. However, to apply the proposed method of this study, it is judged that sufficient estimations are necessary as there are differences in ground conditions, temporary facilities, and reinforcement methods for each site.

A Study for Efficient Behavior of Beam-column Joint Structure Using Material Convergence Section Stage and a Temporary Boundary Condition by Strut (재료 융합 단계와 임시 스트럿의 경계조건을 이용한 기둥-보 강결 구조물의 효율적인 거동 연구)

  • Cho, Jae-Hyeung;Song, Jae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.361-374
    • /
    • 2020
  • Recently, small and medium-sized rahmen-type bridges have been developed as a technology that ensures the stability of structural behavior and the safety of use at the same time by using efficient and economical materials that make up the convergence section of reinforced bar, structural steel and concrete. This study is about a rahmen-type structure applied with the installation and dismantling of the strut. It improves the serviceability of the structure by forming multi-points and efficiently applies the convergence section of structural steel and concrete materials to the structural system changes to induce the displacement improvement effect additionally. By constructing mock-up models for the beam-column joint, the displacement was calculated and compared, and this was compared and analyzed by numerical analysis. The final displacement showed an improvement effect of 13.46% to 36.28% based on the vertical displacement of the existing structure without struts through the experiment of the mock-up models. As a result of analysis by numerical analysis method, the displacement improvement effect of 42.89% could be derived.

Analysis of Behaviors of SPS Underground Composite Frames Considering the Rigidity of RC Wale-Steel Beam Joint (RC 띠장-철골 보 접합부의 고정도에 따른 SPS 지하복합골조 거동 해석)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • In SPS system, steel beams are used as not only temporary struts supporting the wale but main flexural members of building. Previous experimental works show that RC wale-steel beam joints have some flexural rigidity. In this paper, nonlinear analysis is performed using DRAIN-2DX program to investigate the behaviors of the underground composite frames constructed with SPS system when the rigidity of RC wale-steel beam joints change. Analysis variables are the procedure of construction, magnitude of lateral forces, and flexural rigidity of the RC wale-steel beam joint with stud connector. Analysis results show the effects of joint rigidity for the yielding process of frame and the moment and deflection at the mid-span of beam.

A Study on the Rapid Construction Method for Ground Excavation (지반굴착을 위한 급속시공 방안 연구)

  • Sim, Jae-Uk;Son, Sung-Gon;An, Hyung-Jun;Kim, In-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1251-1258
    • /
    • 2008
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall(SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below dredge level, tied together at head of soldier piles and landslide stabilizing piles by beams. There are three types of excavation wall structures: standard method for medium retained heights(<8.0m), internal excavation method and slope excavation method for deep-excavation applications(>8.0m). In the present study, the measured data from seven different sites which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea.

  • PDF

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis (동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Dongchan;Kim, Jongkwan;Ha, Ik-Soo;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.45-65
    • /
    • 2022
  • In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

Performance of IPS Earth Retention System in Soft Clay (연약지반에 적용된 IPS 흙막이 시스템의 거동 특성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Oh, Hee-Jin;Han, Man-Yop;Kim, Moon-Young;Kim, Sung-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2007
  • The performance of innovative prestressed support (IPS) earth retention system applied in soft clay was investigated and presented. The IPS wale system provides a high flexural stiffness to resist the bending by lateral earth pressure, and transfers lateral earth pressure to strut supports. The IPS wale system provides a larger spacing of support than conventional braced and anchored systems. The IPS earth retention system was selected for temporary earth support in a building construction in North Busan area. The excavation was made 28.8 m wide, 52.0 m long, and 16.1 m deep through loose fill to soft clay. The IPS system consists of 650 mm thick slurry walls, and five levels of IPS wales and struts. Field monitoring data were collected including wall deflections at six locations, ground water levels at four locations, IPS wale deflections at thirty locations, and axial loads on struts at twenty locations, during construction. The IPS earth retention system applied in soft clay performed successfully within a designed criterion. Field measurements were compared with design assumptions of the IPS earth retention system. The applicability and stability of the IPS earth retention system in soft clay were investigated and evaluated.

Displacement and Stress Monitoring for Excavation Deep Foundation (인접지역의 깊은 터파기 굴착에서 변위 및 응력의 계측)

  • 원연호
    • Explosives and Blasting
    • /
    • v.17 no.1
    • /
    • pp.27-55
    • /
    • 1999
  • The excavation works for deep foundation in urban areas have recently increased complaints of blasting vibration and settlement of ground level. Foundation must be excavated approximately up to 24-28m depths from the surface. The roads and subway line pass through the excavation area. The Dae-chung station is also located at the nearest distance 5-35m from the working site. To protect subway station and adjacient some structures from blasting and settlement, the level of ground vibration, displacements and stress were monitored and analyzed. The results can be summarized as follows ; 1. An empirical particle velocity equation were obtained by test blasts at Nassan Missi 860 Office tel construction site. $V{\;}={\;}K(D/\sqrt{W})^{-n}$, where the values for n and k are estimated tobe 0.371 and 1.551. From this ground vibration equation, the max. charge weight per delay time against distance from blasting point is calculated. Detailed blasting method is also presented. 2. To measure the horizontal displacement in directions perpendicular to the borehole axis, 6 inclinometers installed around working sites. The displacement at the begining was comparatively high because the installation of struts was delayed, but after its installation the values showed a stable trend. Among them, the displacement by 3 inclinometers installed on a temporary parking area showed comparatively high values, for example, the displacement measured at hole No. IC-l recoded the max. 47.04mm for 6 months and at hole No. IC-2 recorded the max. 57.33mm for 7 months. So, all of these data was estimated below a safe standard value 103mm. 3. Seven strain gauge meter was installed of measure the magnitude and change of stress acted on structs. The measured value of maximum stress was $-465{\;}kgf/\textrm{cm}^2,{\;}-338.4{\;}kgf/\textrm{cm}^2,{\;}302.3{\;}kgf/\textrm{cm}^2$ respectively. In compareto the allowable stress level of steel, they are estimated to be safe.

  • PDF