• Title/Summary/Keyword: Temporary bridge

Search Result 89, Processing Time 0.051 seconds

Effects of Load Carrying Capacity with Method of Application of Prestress on Long-Span Temporary Bridges (장지간 가설교량에서 프리스트레스의 도입방법과 텐던배치에 따른 내하력의 영향)

  • Sim, Jai-Hyun;Park, Jeong-Ung;Park, Kil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1275-1280
    • /
    • 2009
  • In recent bridge design, studies on application of external prestress have actively been conducted. When prestress is applied to steel structures, the limit value of elastic strain with large load increases with reduction of steels, this method is economic in cost. According to study by Brodka (1969), steel plate bridges with prestress has an effect on cost saving of about 15% compared with structures without prestress. For that reason, our country recently adopted this method in construction of temporary bridges and various engineering technologies have been developed which made stress correction, droop correction and long-span construction possible with relatively small cross sections. This study verifies the method of application of prestress in temporary steel structures, the influence of high-strength tendon arrangement and the effects of composite structures of steel plates and high-strength tendons based on existing method.

Aerodynamic Characteristics of Catwalk Structures (캣워크 구조물의 공기역학적 특성)

  • Lee, Seung-Ho;Lee, Han-Kyu;Kwon, Soon-Duck;Kim, Jong-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.105-110
    • /
    • 2011
  • Catwalk structures are temporary walk ways for erection of main cables in suspension bridge. The aerodynamic characteristics of the catwalk structures are not well studied even though the catwalk structures are sensitive to wind action because of its flexibility. Present study demonstrates technical results obtained from wind tunnel tests of various catwalk structures. To obtain the aerostatic force coefficients of the floor system of catwalk, 1/14 and 1/4 scaled partial rigid models were fabricated and tested at the wind tunnel. In order to investigate the Reynolds number effects, the aerostatic force coefficients were measured at various wind velocities ranged from 5m/s to 30m/s. The test results revealed that the Reynolds number effects on aerostatic coefficients were not significant for the catwalk floor systems. An empirical equation for aerostatic force coefficients of catwalk are proposed based on the measured results.

  • PDF

A continuity method for bridges constructed with precast prestressed concrete girders

  • Lee, Hwan Woo;Barnes, Robert W.;Kim, Kwang Yang
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.879-898
    • /
    • 2004
  • A method of making simply supported girders continuous is described for bridges with spans of 30-45 m. The splicing method takes advantage of an induced secondary moment to transform the self-weight stresses in the precast simply supported girders into values representative of a continuous girder. The secondary moment results from prestressing of continuity tendons and detensioning of temporary tendons in the girders. Preliminary sections are selected for spliced U-girder bridges with a range of span lengths. Use of the proposed technique results in girder depth reductions of 500-800 mm when compared to standard simply supported I-girder bridges. The flexural behavior of an example bridge with 40-m spans is examined to illustrate the necessary considerations for determining the optimum sequence of splicing operations.

A Study on Integrated Cross Beam Improvement of Through Railway Plate Girder Bridge Support (철도 하로판형교 지점부의 일체형 가로보 개선에 관한 연구)

  • Ha, Yun-Soo;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Lee, Seong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.114-120
    • /
    • 2018
  • Recently, the plate girder bridge is offen designed a temporary bridge for underground roadway construction have not interrupt railroad operation. The integral support plate girder bridge which have longitudinal girder and cross-girder is improved workability and reduction cost and of construction time. The cross beam of the integral support plate girder bridge has a normal box shape to distribute load on the main girde to end both side girder. In this study, On the change to the web distance of the cross box shows characteristics of related to the stresses and displacements on the flange and web plate. Afterward, the various analysis contributed to the safety improvement of crossbeam of the integral support crossbeam plate girder bridge.

A Case Study on Caisson Foundation Grouting in Geo-Ga Bridge (거가대교 케이슨기초 그라우트 충전 사례연구)

  • Bae, Kyung-Tae;Cha, Kyung-Seob;Kim, Young-Jin;Park, Chung-Whan;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1046-1050
    • /
    • 2010
  • During construction of a sea-crossing bridge grouting was used to fill densely the space between the bottom of caisson and the ground. This grout mixture was mixed with an anti-washout admixture after locating accurately the pre-cast caisson on three concrete landing pads. This method differs significantly from the costly conventional method, for bridge foundations offshore, where concrete is placed in situ after excavating inside of a temporary concrete coffering wall. To verify the grouting method in advance, the full-scale field tests were performed twice on land. After identifying the fluidity of the grout material to be filled, finding some possible problems with the main construction and revising the original design, the main construction has been continuing successfully with 20 caissons completed to date. The purpose of this paper is to introduce for the first time in Korea the grouting method including the automatic and the manual monitoring system based on the main construction of the caisson foundation.

  • PDF

ENGINEERING A BIOARTIFICIAL LIVER DEVICE

  • Park, Jae-Sung;Yarmush, Martin L.;Tilles, Arno W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1419-1426
    • /
    • 2008
  • Fulminant hepatic failure is a clinical syndrome associated with a high mortality rate. Orthotopic liver transplantation is the only clinically proven effective treatment for patients with end-stage liver disease who do not respond to medical management. A major limitation of this treatment modality is the scarcity of donor organs available, resulting in patients dying while waiting for a donor liver. An extracorporeal bioartificial liver (BAL) device containing viable hepatocytes has the potential to provide temporary hepatic support to liver failure patients, serving as a bridge to transplantation while awaiting a suitable donor. In some patients, providing temporary hepatic support may be sufficient to allow adequate regeneration of the host liver, thereby eliminating the need for a liver transplant. Although the BAL device is a promising technology for the treatment of liver failure, there are several technical challenges that must be overcome in order to develop systems with sufficient processing capacity and of manageable size. In this overview, the authors describe the critical issues involved in developing a BAL device. They also discuss their experiences in hepatocyte culture optimization within the context of a microchannel flat-plate BAL device.

  • PDF

Development on Reconstruction Cost Model for Decision Making of Bridge Maintenance (교량 유지관리 의사결정 지원을 위한 개축비용 산정모델 개발)

  • Sun, Jong-Wan;Lee, Dong-Yeol;Lee, Min-Jae;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.533-542
    • /
    • 2016
  • The periodic maintenance of bridges is necessary once they have been constructed and its cost depends on various factors, such as their condition, environmental conditions and so on. To make a decision support system, it is essential to establish a basic reconstruction cost model. In this study, a regression model is suggested for calculating the reconstruction cost for typical cases and influential factors, depending on the type of bridge and its components, by analyzing the basic bridge specifications based on the data of the Bridge Management System (BMS). The details for each case were estimated in consideration of the cost calculation variables. The details for each case were estimated in consideration of the cost calculation variables. The cost model for the new construction of the superstructure, substructure and foundation and the temporary bridge construction and demolition costs were drawn from the regression analysis of the estimation results of typical cases according to the cost calculation variables. The reconstruction costs for different types of bridge were obtained using the cost model and compared with those in the literature. The cost model developed herein is expected to be utilized effectively in maintenance decision making.

Maintenance of the Sea-crossing Bridge for Ship Collision Problems (선박충돌 문제에 대한 해상교량의 유지관리)

  • Bae, Yong-Gwi;Lee, Seong-Lo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.56-64
    • /
    • 2016
  • Damage of sea-crossing bridge by ship collision is related to estimate frequencies of overloading due to impact, and bridge accordingly must be designed to satisfy related acceptance criteria. Another important aspect is the management on increment of collision risk during the service period. In this study, related plan, main span length, air draft clearance and collision risk are analyzed for the interim assessment of Incheon Bridge focusing on the ship collision problem. In particular, for the increment of collision risk, the optimized navigation speed is proposed by reviewing the research findings and navigation guidelines etc. as a temporary expedient. Also basic procedure for reasonable prediction of target vessel and passage is established and probabilistic prediction method to embrace the uncertainty of the prediction is proposed as a fundamental solution. It is necessary to conduct further research on collision risk management and promptly carry out interim assessments of other marine bridges.

Simplified computational methodology for analysis and studies on behaviour of incrementally launched continuous bridges

  • Sasmal, Saptarshi;Ramanjaneyulu, K.;Srinivas, V.;Gopalakrishnan, S.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.245-266
    • /
    • 2004
  • Incremental launching method is one of the highly competitive techniques for construction of concrete bridges. It avoids costly and time consuming form work and centralizes all construction activities in a small casting yard, thus saving in cost and time against conventional bridge construction. From the quality point of view, it eliminates the uncertainty of monolithic behaviour by allowing high repetitiveness and industrial environment. But, from analysis and design point of view, the most characteristic aspect of incrementally launched bridges is that, it has to absorb the stresses associated with the temporary supports that are gradually taken on by the deck during its launch. So, it is necessary to analyse the structure for each step of launching which is a tedious and time consuming process. Effect of support settlements or temperature variation makes the problem more complex. By using transfer matrix method, this problem can be handled efficiently with minimal computational effort. This paper gives insight into method of analysis, formulation for optimization of the structural system, effect of support settlement and temperature gradient, during construction, on the stress state of incrementally launched bridges.

A Case Study on Impact Factor of Bridge in Tunnels Subjected to Moving Vehicle Load (터널내 교량의 이동차량하중 작용시 충격계수에 대한 사례연구)

  • 김재민;이중건;이익효;이두화
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1999
  • This paper presents results of dynamic analysis for a bridge in intersection part of two tunnels subjected to moving vehicle load. Since such a bridge system is very unusual due to the fact that it is located in tunnel, the dynamic characteristics of the structure can not be assumed as conventional one. The structure investigated in this study it a reinforced concrete bridge in the intersection part of Namsan Tunnel-1 and Tunnel-2 in Seoul. It is supported by temporary steel structure which shall be constructed during the period of replacing lining in Tunnel-2. Dynamic analysis was carried out for the system using a finite element model constructed by general purpose FE program SAP2000. For this purpose, the structure, lining of tunnels, and surrounding rock were represented by finite elements, while the rock region it truncated and on its outer boundary viscous dampers were placed to simulate radiation of elastic waves generated tunnels. Several types of vehicle with various driving velocities were considered in this analysis. The FE model including vehicle loadings was verified by comparing calculated peak particle velocity with the measured one. From the analysis, the impart factor for the bridge was estimated as 0.21, which indicates that the use of upper bound for the impact factor in design code is reasonable for this kind of bridge system.

  • PDF