• Title/Summary/Keyword: Temporal processing

Search Result 741, Processing Time 0.028 seconds

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

Protection of Location Privacy for Spatio-Temporal Query Processing Using R-Trees (R-트리를 활용한 시공간 질의 처리의 위치 개인정보 보호 기법)

  • Kwon, Dong-Seop
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.85-98
    • /
    • 2010
  • The prevailing infrastructure of ubiquitous computing paradigm on the one hand making significant development for integrating technology in the daily life but on the other hand raising concerns for privacy and confidentiality. This research presents a new privacy-preserving spatio-temporal query processing technique, in which location based services (LBS) can be serviced without revealing specific locations of private users. Existing location cloaking techniques are based on a grid-based structures such as a Quad-tree and a multi-layered grid. Grid-based approaches can suffer a deterioration of the quality in query results since they are based on pre-defined size of grids which cannot be adapted for variations of data distributions. Instead of using a grid, we propose a location-cloaking algorithm which uses the R-tree, a widely adopted spatio-temporal index structure. The proposed algorithm uses the MBRs of leaf nodes as the cloaked locations of users, since each leaf node guarantees having not less than a certain number of objects. Experimental results show the superiority of the proposed method.

Functional Reorganization Associated with Semantic Language Processing in Temporal Lobe Epilepsy Patients after Anterior Temporal Lobectomy: A Longitudinal Functional Magnetic Resonance Image Study

  • Kim, Jae-Hun;Lee, Jong-Min;Kang, Eun-Joo;Kim, June-Sic;Song, In-Chan;Chung, Chun-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2010
  • Objective: The focus of this study is brain plasticity associated with semantic aspects of language function in patients with medial temporal lobe epilepsy (mTLE) Methods: Using longitudinal functional magnetic resonance imaging (fMRI), patterns of brain activation were observed in twelve left and seven right unilateral mTLE patients during a word-generation task relative to a pseudo-word reading task before and after anterior temporal section surgery. Results: No differences were observed in precentral activations in patients relative to normal controls (n = 12), and surgery did not alter the phonological-associated activations. The two mTLE patient groups showed left inferior prefrontal activations associated with semantic processing (word-generation>pseudo-word reading), as did control subjects. The amount of semantic-associated activation in the left inferior prefrontal region was negatively correlated with epilepsy duration in both patient groups. Following temporal resection, semantic-specific activations in inferior prefrontal region became more bilateral in left mTLE patients, but more left-lateralized in right mTLE patients. The longer the duration of epilepsy in the patients, the larger the increase in the left inferior prefrontal semantic-associated activation after surgery in both patient groups. Semantic activation of the intact hippocampus, which had been negatively correlated with seizure frequency, normalized after the epileptic side was removed. Conclusion: These results indicate alternation of semantic language network related to recruitment of left inferior prefrontal cortex and functional recovery of the hippocampus contralateral to the epileptogenic side, suggesting an intra- and inter-hemispheric reorganization following surgery.

A study on enhancement of heterogeneous noisy image quality for the performance improvement of target detection and tracking (표적 탐지/추적 성능 향상을 위한 불균일 미세 잡음 영상 화질개선 연구)

  • Kim, Y.;Yoo, P.H.;Kim, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.923-936
    • /
    • 2014
  • Images can be contaminated with different types of noise, for different reasons. The neighborhood averaging and smoothing by image averaging are the classical image processing techniques for noise removal. The classical spatial filtering refers to the aggregate of pixels composing an image and operating directly on these pixels. To reduce or remove effectively noise in image sequences, it usually needs to use noise reduction filter based on space or time domain such as method of spatial or temporal filter. However, the method of spatial filter can generally cause that signals of objects as the target are also blurred. In this paper, we propose temporal filter using the piece-wise quadratic function model and enhancement algorithm of image quality for the performance improvement of target detection and tracking by heterogeneous noise reduction. Image tracking simulation that utilizes real IIR(Imaging Infra-Red) images is employed to evaluate the performance of the proposed image processing algorithm.

Spatio-Temporal Index Structure for Trajectory Queries of Moving Objects in Video (비디오에서 이동 객체의 궤적 검색을 위한 시공간 색인구조)

  • Lee, Nak-Gyu;Bok, Kyoung-Soo;Yoo, Jae-Soo;Cho, Ki-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.69-82
    • /
    • 2004
  • A moving object has a special feature that it's spatial location, shape and size are changed as time goes. These changes of the object accompany the continuous movement that is called the trajectory. In this paper, we propose an index structure that users can retrieve the trajectory of a moving object with the access of a page. We also propose the multi-complex query that is a new query type for trajectory retrieval. In order to prove the excellence of our method, we compare and analyze the performance for query time and storage space through experiments in various environments. It is shown that our method outperforms the existing index structures when processing spatio-temporal trajectory queries on moving objects.

Neural Switching Mechanism in the late Korean-English bilinguals by Event-Related fMRI

  • Kim, Jeong-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.272-277
    • /
    • 2008
  • Functional MRI technique was used in this study for examining the language switching mechanisms between the first language (L1) and the second language (L2). Language switching mechanism is regarded as a complex task that involves an interaction between L1 and L2. The aim of study is to find out the brain activation patterns during the phonological process of reading real English words and English words written in Korean characters in a bilingual person. Korean-English bilingual subjects were examined while they covertly read four types of words native Korean words, Korean words of a foreign origin, English words written in Korean characters, and English words. The fMRI results reveal that the left hemispheric language-related regions at the brain, such as the left inferior frontal, superior temporal, and parietal cortices, have a greater response to the presentation of English words written in Korean characters than for the other types of words, in addition, a slight difference was observed in the occipital-temporal lobe. These results suggest that a change in the brain circuitry underlying the relational processes of language switching is mainly associated with general executive processing system in the left prefrontal cortex rather than with a similarity-based processing system in the occipital-temporal lobes.

Design of Moving Object Pattern-based Distributed Prediction Framework in Real-World Road Networks (실세계 도로 네트워크 환경에서의 이동객체 패턴기반 분산 예측 프레임워크 설계)

  • Chung, Jaehwa
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.527-532
    • /
    • 2014
  • Recently, due to the proliferation of mobile smart devices, the inovation of bigdata, which analyzes and processes massive data collected from various sensors implaned in smart devices, expands to LBSs. Many location prediction techniques for moving objects have been studied in literature. However, as the majority of studies perform location prediction which depends on specific applications, they hardly reflect the technical requirements of next-generation spatio-temporal information services. Therefore, this paper proposes the design of general-purpose distributed moving object prediction query processing framework that is capable of performing primitive and various types of queries effectively based on massive spatio-temporal data of moving objects in real-world space networks.

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

Intermedia Synchronization Protocol for Continuous Media Using MPEG-4 in Mobile Distributed Systems

  • Dominguez, Eduardo Lopez;Hernandez, Saul Eduardo Pomares;Gil, Pilar Gomez;Calleja, Jorge De La;Benitez, Antonio;Marin-Hernandez, Antonio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1689-1706
    • /
    • 2012
  • The preservation of temporal dependencies among a group of processes that exchange continuous media at runtime is a key issue for emerging mobile distributed systems (MDS), such as monitoring of biosignals and interactive multiuser games. Although several works are oriented to satisfy temporal dependencies, most of them are not suitable for MDSs. In general, an MDS is characterized by the absence of global references (e.g. shared memory and wall clock), host mobility, limited processing and storage capabilities in mobile hosts, and limited bandwidth on wireless communication channels. This paper proposes an asymmetric synchronization protocol to be used at runtime in an MDS without using a common reference. One main aspect of our synchronization protocol is that it translates temporal constraints to causal dependencies of the continuous media data as seen by the mobile hosts. We simulate the protocol by considering a cellular network environment and by using MPEG-4 encoders. The simulation results show that our protocol is effective in reducing the synchronization error. In addition, the protocol is efficient in terms of processing and storage costs at the mobile devices, as well as in the overhead attached per message across the wired and wireless channels.

Robust Traffic Monitoring System by Spatio-Temporal Image Analysis (시공간 영상 분석에 의한 강건한 교통 모니터링 시스템)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1534-1542
    • /
    • 2004
  • A novel vision-based scheme of extracting real-time traffic information parameters is presented. The method is based on a region classification followed by a spatio-temporal image analysis. The detection region images for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shadow, using statistical and structural features. Misclassification in a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. Since only local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized without using dedicated parallel processors, while ensuring detection performance robust to the variation of weather conditions, shadows, and traffic load.