• Title/Summary/Keyword: Temporal histogram

Search Result 51, Processing Time 0.032 seconds

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Analysis on the Characteristics about Representative Temporal-distribution of Rainfall in the Annual Maximum Independent Rainfall Events at Seoul using Beta Distribution (베타분포를 이용한 서울 지점 연 최대치 독립 호우사상의 대표 시간분포 특성 분석)

  • Jun, Chang Hyun;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.361-372
    • /
    • 2013
  • This study used the beta distribution to analyze the independent annual maximum rainfall events from 1961 to 2010 and decided the representative rainfall event for Seoul. In detail, the annual maximum rainfall events were divided into two groups, the upper 50% and the lower 50%. For each group, a beta distribution was derived to pass the mean location of the rainfall peaks. Finally, the representative rainfall event was decided as the rainfall histogram of the arithmetic average of the two beta distributions derived. The representative rainfall event derived has a realistic shape very similar to those observed annual maximum rainfall events, especially with the higher rainfall peak compared to that of the Huff distribution. Comparison with other rainfall distribution models shows that the temporal distribution of the representative rainfall event derived in this study is most similar to the Keifer & Chu model.

Percentile-Based Analysis of Non-Gaussian Diffusion Parameters for Improved Glioma Grading

  • Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.104-116
    • /
    • 2022
  • The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.

Accurate Location Identification by Landmark Recognition

  • Jian, Hou;Tat-Seng, Chua
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.164-169
    • /
    • 2009
  • As one of the most interesting scenes, landmarks constitute a large percentage of the vast amount of scene images available on the web. On the other hand, a specific "landmark" usually has some characteristics that distinguish it from surrounding scenes and other landmarks. These two observations make the task of accurately estimating geographic information from a landmark image necessary and feasible. In this paper, we propose a method to identify landmark location by means of landmark recognition in view of significant viewpoint, illumination and temporal variations. We use GPS-based clustering to form groups for different landmarks in the image dataset. The images in each group rather fully express the possible views of the corresponding landmark. We then use a combination of edge and color histogram to match query to database images. Initial experiments with Zubud database and our collected landmark images show that is feasible.

  • PDF

A Study on the Extraction of the dynamic objects using temporal continuity and motion in the Video (비디오에서 객체의 시공간적 연속성과 움직임을 이용한 동적 객체추출에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.115-121
    • /
    • 2016
  • Recently, it has become an important problem to extract semantic objects from videos, which are useful for improving the performance of video compression and video retrieval. In this thesis, an automatic extraction method of moving objects of interest in video is suggested. We define that an moving object of interest should be relatively large in a frame image and should occur frequently in a scene. The moving object of interest should have different motion from camera motion. Moving object of interest are determined through spatial continuity by the AMOS method and moving histogram. Through experiments with diverse scenes, we found that the proposed method extracted almost all of the objects of interest selected by the user but its precision was 69% because of over-extraction.

Simple Wavelet-based Histogram of Multidimensional Selectivity Estimation for Spatio-temporal Databases (시공간데이터베이스의 다차원 선택도 추정을 위한 웨이블렛 기반 히스토그램)

  • Kwon, Jung-Min;Shin, Byung-Chul;Lee, Jong-Yun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.34-36
    • /
    • 2005
  • 선택도 추정 기법은 상용 데이터베이스에서 질의 최적화를 위해 많이 사용하고 있다. 그 중 선택도 추정 기법에 가장 많이 사용되고 있는 기법은 히스토그램이다. 최근 시공간 데이터베이스 관련 연구에서 시간$\cdot$공간 데이터베이스의 선택도 추정 기법이 활발하게 이루어지고 있다. 이 히스토그램 추정 기법이 과거에서 현재시점까지 범위 질의 수행을 성공적으로 이루어지고 있지만 대량의 데이터들을 효율적으로 관리하기에는 저장오버헤드가 너무 크다. 본 논문에서는 시공간데이터베이스에서 성공적으로 선택도 추정을 다룬 히스토그램 추정 기법을 보완하여 과거 이력데이터들의 저장을 효율적으로 할 수 있는 압축기법을 제안한다. 현재 객체에 대해서는 기존 연구에서 성공적으로 이루어진 히스토그램 기반 추정 기법을 응용하고 과거 이력데이터에 대해서는 압축기법인 웨이블렛을 응용하여 선택도추정의 오류율과 저장오버헤드의 향상이 기대된다.

  • PDF

A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement (Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘)

  • Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula (한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법)

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF