• Title/Summary/Keyword: Temporal Resolution

Search Result 691, Processing Time 0.027 seconds

Development of a Method for Tracking Sandbar Formation by Weir-Gate Opening Using Multispectral Satellite Imagery in the Geumgang River, South Korea (금강에서 다분광 위성영상을 이용한 보 운영에 따른 모래톱 형성 추적 방법의 개발)

  • Cheolho Lee;Kang-Hyun Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers (하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구)

  • Yoon, Soo Bin;Lee, Chang Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.815-822
    • /
    • 2023
  • Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.

Restoration of Missing Data in Satellite-Observed Sea Surface Temperature using Deep Learning Techniques (딥러닝 기법을 활용한 위성 관측 해수면 온도 자료의 결측부 복원에 관한 연구)

  • Won-Been Park;Heung-Bae Choi;Myeong-Soo Han;Ho-Sik Um;Yong-Sik Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.536-542
    • /
    • 2023
  • Satellites represent cutting-edge technology, of ering significant advantages in spatial and temporal observations. National agencies worldwide harness satellite data to respond to marine accidents and analyze ocean fluctuations effectively. However, challenges arise with high-resolution satellite-based sea surface temperature data (Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA), where gaps or empty areas may occur due to satellite instrumentation, geographical errors, and cloud cover. These issues can take several hours to rectify. This study addressed the issue of missing OSTIA data by employing LaMa, the latest deep learning-based algorithm. We evaluated its performance by comparing it to three existing image processing techniques. The results of this evaluation, using the coefficient of determination (R2) and mean absolute error (MAE) values, demonstrated the superior performance of the LaMa algorithm. It consistently achieved R2 values of 0.9 or higher and kept MAE values under 0.5 ℃ or less. This outperformed the traditional methods, including bilinear interpolation, bicubic interpolation, and DeepFill v1 techniques. We plan to evaluate the feasibility of integrating the LaMa technique into an operational satellite data provision system.

Comparison of the Vertical Data between Eulerian and Lagrangian Method (오일러와 라그랑주 관측방식의 연직 자료 비교)

  • Hyeok-Jin Bae;Byung Hyuk Kwon;Sang Jin Kim;Kyung-Hun Lee;Geon-Myeong Lee;Yu-Jin Kim;Ji-Woo Seo;Yu-Jung Koo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1009-1014
    • /
    • 2023
  • Comprehensive observations of the Euler method and the Lagrangian method were performed in order to obtain high-resolution observation data in space and time for the complex environment of new city. The two radiosondes, which measure meteorological parameters using Lagrangian methods, produced air pressure, wind speed and wind direction. They were generally consistent with each other even if the observation points or times were different. The temperature measured by the sensor exposed to the air during the day was relatively high as the altitude increased due to the influence of solar radiation. The temporal difference in wind direction and speed was found in the comparison of Euler's wind profiler data with radiosonde data. When the wind field is horizontally in homogeneous, this result implies the need to consider the advection component to compare the data of the two observation methods. In this study, a method of using observation data at different times for each altitude section depending on the observation period of the Euler method is proposed to effectively compare the data of the two observation methods.

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.

Atmospheric Disturbance Simulation in Adaptive Optics: from Theory to Practice (적응광학에서의 대기 외란 모사: 이론에서 실제 적용까지)

  • Jun Ho Lee;Ji Hyun Pak;Ji Yong Joo;Seok Gi Han;Yongsuk Jung;Youngsoo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.199-209
    • /
    • 2024
  • Predicting the performance of adaptive optics systems is a crucial step in their design and analysis. First-order prediction methods, based primarily on several assumptions and scaling laws, are commonly used. These methods must account for various parameters and error sources, such as the intensity and profile of atmospheric turbulence, fitting errors based on the resolution of the wavefront sensor and deformable mirror, wavefront-sensor noise propagated through the wavefront-reconstruction algorithm, servo lag due to the finite bandwidth of the control loop, and anisoplanatism caused by the arrangement of natural and laser guide stars. However, since first-order performance-prediction methods based on certain assumptions can sometimes yield results that deviate from real-world performance, evaluation through computational simulations and closed-loop tests on a testbed is necessary. Additionally, an atmospheric simulator is required for closed-loop testing, which must adequately simulate the spatial and temporal characteristics of atmospheric disturbances. This paper aims to present an overview of the theory of atmospheric disturbance simulators, as well as their implementation in computational simulation and hardware.

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

Evaluation of Cat Brain infarction Model Using MicroPET (마이크로 PET을 이용한 고양이 뇌 경색 모델의 평가)

  • Lee, Jong-Jin;Lee, Dong-Soo;Kim, Yun-Hui;Hwang, Do-Won;Kim, Jin-Su;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.528-531
    • /
    • 2004
  • Purpose: PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal charge using microPET scanner. Materials and Methods: Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ${\mu}l$ was injected using 30 G needle for 5 minutes to establish the infarction model. $^{18}F$-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, $^{18}F$-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Results: Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. Conclusion: We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using $^{18}F$-FDG microPET scanner.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.