• Title/Summary/Keyword: Temporal Properties

Search Result 341, Processing Time 0.026 seconds

A Temporal Data model and a Query Language Based on the OO data model

  • Shu, Yongmoo
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.87-105
    • /
    • 1997
  • There have been lots of research on temporal data management for the past two decades. Most of them are based on some logical data model, especially on the relational data model, although there are some conceptual data models which are independent of logical data models. Also, many properties or issues regarding temporal data models and temporal query languages have been studied. But some of them were shown to be incompatible, which means there could not be a complete temporal data model, satisfying all the desired properties at the same time. Many modeling issues discussed in the papers, do not have to be done so, if they take object-oriented data model as a base model. Therefore, this paper proposes a temporal data model, which is based on the object-oriented data model, mainly discussing the most essential issues that are common to many temporal data models. Our new temporal data model and query language will be illustrated with a small database, created by a set of sample transaction.

  • PDF

A Temporal Data model and a Query Language Based on the OO data model

  • 서용무
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.87-87
    • /
    • 1989
  • There have been lots of research on temporal data management for the past two decades. Most of them are based on some logical data model, especially on the relational data model, although there are some conceptual data models which are independent of logical data models. Also, many properties or issues regarding temporal data models and temporal query languages have been studied. But some of them were shown to be incompatible, which means there could not be a complete temporal data model, satisfying all the desired properties at the same time. Many modeling issues discussed in the papers, do not have to be done so, if they take object-oriented data model as a base model. Therefore, this paper proposes a temporal data model, which is based on the object-oriented data model, mainly discussing the most essential issues that are common to many temporal data models. Our new temporal data model and query language will be illustrated with a small database, created by a set of sample transaction.

Visual Representation of Temporal Properties in Formal Specification and Analysis using a Spatial Process Algebra (공간 프로세스 대수를 이용한 정형 명세와 분석에서의 시간속성의 시각화)

  • On, Jin-Ho;Choi, Jung-Rhan;Lee, Moon-Kun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.339-352
    • /
    • 2009
  • There are a number of formal methods for distributed real-time systems in ubiquitous computing to analyze and verify the behavioral, temporal and the spatial properties of the systems. However most of the methods reveal structural and fundamental limitations of complexity due to mixture of spatial and behavioral representations. Further temporal specification makes the complexity more complicate. In order to overcome the limitations, this paper presents a new formal method, called Timed Calculus of Abstract Real-Time Distribution, Mobility and Interaction(t-CARDMI). t-CARDMI separates spatial representation from behavioral representation to simplify the complexity. Further temporal specification is permitted only in the behavioral representation to make the complexity less complicate. The distinctive features of the temporal properties in t-CARDMI include waiting time, execution time, deadline, timeout action, periodic action, etc. both in movement and interaction behaviors. For analysis and verification of spatial and temporal properties of the systems in specification, t-CARDMI presents Timed Action Graph (TAG), where the spatial and temporal properties are visually represented in a two-dimensional diagram with the pictorial distribution of movements and interactions. t-CARDMI can be considered to be one of the most innovative formal methods in distributed real-time systems in ubiquitous computing to specify, analyze and verify the spatial, behavioral and the temporal properties of the systems very efficiently and effectively. The paper presents the formal syntax and semantics of t-CARDMI with a tool, called SAVE, for a ubiquitous healthcare application.

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

Two stage neural network for spatio-temporal pattern recognition (시변패턴 인식을 위한 2단 구조의 신경회로망)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2290-2292
    • /
    • 1998
  • This paper introduces Two-stage neural network that is capable of recognizing spatio-temporal patterns. First stage takes a spatio-temporal pattern as input and compress it into sparse spatio-temporal pattern. Second stage is for temporal pattern recognition with nonuniform inhibitory connections and different cell sizes. These are basic properties for detecting a embeded pattern in a larger pattern. The network is evaluated by computer simulation.

  • PDF

Green and Ampt Parameter Estimation Considering Temporal Variation of Physical Properties on Tilled Soil (경운토양의 물리적 특성변화를 고려한 Green And Ampt 매개변수의 추정)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-129
    • /
    • 1991
  • This study refers to temporal variation of physical properties of tilled soil under natural rainfalls. Field measurements of porosity, average hydraulic conductivity and average capillary pressure head on a tilled soil were conducted by soil sampler and air-entry permeameter respectively at regular intervals after tillage. Temporal variation of these physical properties were analysed by cumulative rainfall energy since tillage. Field experiment was conducted on a sandy loam soil at Suwon durging April~July in 1989. The followings are a summary of this study results ; 1. Average porosity just after tillage was 0.548cm$^3$/cm$^3$. As cumulative rainfall energy were increased in 0.1070, 0.1755, 0.3849 J/cm$^2$, average porosity were decreased in 0.506, 0.4]95, 0.468m$^3$/cm$^3$ respectively. 2. Average hydraulic conductivity just after tillage was 45.42cm/hr. As cumulative rainfall energy were increased in 0.1755, 0.2466, 0.2978, 0.3849J/cm$^2$ average hydraulic conductivity were decreased in 15.34, 13.47, 9.58, 8.65cm/hr respectively. 3. As average porosity were decreased in 0.548, 0.506, 0.495, 0.468cm$^3$/cm$^3$ average capillary pressure head were increased in 6.1, 6.7, 6.9, 7.4cm respectively. 4. It was found that temporal variation of porosity, average hydraulic conductivity on a tilled soil might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity. 5. The results of this study may be helpful to predict infiltration into a tilled soil more accurately by considering Temporal variation of physical properties of soil.

  • PDF

Temporal Texture modeling for Video Retrieval (동영상 검색을 위한 템포럴 텍스처 모델링)

  • Kim, Do-Nyun;Cho, Dong-Sub
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.149-157
    • /
    • 2001
  • In the video retrieval system, visual clues of still images and motion information of video are employed as feature vectors. We generate the temporal textures to express the motion information whose properties are simple expression, easy to compute. We make those temporal textures of wavelet coefficients to express motion information, M components. Then, temporal texture feature vectors are extracted using spatial texture feature vectors, i.e. spatial gray-level dependence. Also, motion amount and motion centroid are computed from temporal textures. Motion trajectories provide the most important information for expressing the motion property. In our modeling system, we can extract the main motion trajectory from the temporal textures.

  • PDF

Representation of Temporal Logic Framework Using Petri Net (Petri Net을 이용한 시간논리 구조의 표현)

  • Kim, Jung-Chul;Mo, Young-Seung;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.615-617
    • /
    • 2000
  • Temporal Logic Frameworks is convenient to represent temporal relation. It is useful to represent a dynamic properties of Discrete Event Dynamic Systems. Also, it is convenient to express a current and next state of event using logical representation. Because the teachability tree of the Temporal Logic Frameworks is very complexity it is difficult to understand. In this paper, we defined some rules to represent Temporal Logic Frameworks by Petri Net and proposed am method of the representation of them Petri Net for the Temporal Logic Frameworks. An example are used to demonstrate the feasibility of this method.

  • PDF

A Formal Modeling of Managed Object Behaviour with Dynamic Temporal Properties (동적 시간지원 특성을 지원하는 망관리 객체의 정형적 모델링)

  • Choi, Eun-Bok;Lee, Hyung-Hyo;Noh, Bong-Nam
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.166-180
    • /
    • 2000
  • Recommendations of ITU-T and ISO stipulate the managerial abstraction of static and dynamic characteristics of network elements, management functions as well as management communication protocol. The current recommendations provide the formal mechanism for the structural parts of managed objects such as managed object class and attributes. But the current description method does not provide the formal mechanism for the behavioral characteristics of managed objects in clear manner but in natural language form, the complete specification of managed objects is not fully described. Also, the behaviour of managed objects is affected by their temporal and active properties. While the temporal properties representing periodic or repetitive internals are to describe managed objects behaviour in rather strict way, it will be more powerful if more dynamic temporal properties determined by external conditions are added to managed objects. In this paper, we added dynamic features to scheduling managed objects, and described, in GDMO, scheduling managed objects that support dynamic features. We also described behaviour of managed objects in newly defined BDL that has dynamic temporal properties. This paper showed that dynamic temporal managed objects provide a systematic and formal method in agent management function model.

  • PDF

Prediction of Temporal Variation of Son Concentrations in Rainwater (산성비 모델을 이용한 시간별 강우성분 예측)

  • 김순태;홍민선;문수호;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.191-204
    • /
    • 2003
  • A one dimensional time dependent acid rain model considering size distribution of aerosols and hydrometeors is developed to predict observed chemical and physical properties of precipitation. Temporal variations of anions and cations observed are predicted fairly well with acid rain model simulations. It is found that aerosol depletion rates are highly dependent on aerosol sizes under the assumption of Marshall - Palmer raindrop size distribution. Also, the aerosol depletion during the initial rain event largely influences on ion concentrations in rainwaters.