RERS Fl4s B
19974 5H 87

A Temporal Data Model and a Query Language
Based on the OO data model

Yongmoo Suh*

ABSTRACT

There have been lots of research on temporal data management for the past two decades.
Most of them are based on some logical data model, especially on the relational data model,
although there are some conceptual data models which are independent of logical data models,
Also, many properties or issues regarding temporal data models and temporal query languages
have been studied. But some of them were shown to be incompatible, which means there could
not be a complete temporal data model, satisfying all the desired properties at the same time.
Many modeling issues discussed in the papers, do not have to be done so, if they take
object-oriented data model as a base model. Therefore, this paper proposes a temporal data
model, which is based on the object-oriented data model, mainly discussing the most essential
issues that are common to many temporal data models, Our new temporal data model and
query language will be illustrated with a small database, created by a set of sample

transactions.

1. Introduction

There are many applications, in which it is important to capture and utilize the history of values of
objects, such as banking, inventory control, personnel management, analysis of serial scientific
experimental data, trend analysis in DSS, etc. But most of the conventional DBMSs do not support the
temporal aspects of data. When old values are replaced with new ones, they are not retained in the
database any more. As such, one cannot issue historical queries, asking for old values of objects. Also,
in engineering fields such as CAD/CAM and CASE, it is frequent to make a new version of an
artifact, Therefore, it is necessary to maintain the history of versions of versionable objects, so that one

can figure out which one is a version of another and which version is derived from some generic

* Department of Business Administration, Korea University

88 Yongmoo Suh RERS

object. Obviously, version management of this kind is another area that requires the support for the
temporal management of data.

More than 40 temporal data models have been introduced in the literature, most of them with their
own temporal query languages [15]. They discussed many issues such as types of time-line
(continuous, discrete, linear, branching), timestamping represented either as time point or as time
interval, unit of timestamping (attribute timestamping, tuple timestamping, table timestamping, etc),
types of time to support (valid time, transaction time), INF vs Non-INF, temporal normalization,
temporal ordering, interpolation, homogeneity, temporal optimization, reducibility to snapshot database
and so on. Most of the temporal data models are based on some logical data model such as relational
model and object-oriented model. Although there are some temporal data models which are independent
of the logical data models [10, 21], they eventually have to be mapped to a logical data model,

This paper proposes a temporal data model, which are based on the object-oriented data model,
mainly discussing the most essential issues that are common to many temporal data models, There are
some reasons for taking the object-oriented data model as a basis. First, we should note that many of
the issues mentioned above stem from the fact that their models are based on the relational model.
Otherwise, they do not have to be discussed. Second, time-varying attributes whose values are varying
over time cannot satisfy the relational requirement of first normal form (INF), since the value of a
time-varying attribute is complex (eg., it is basically set-valued). Similar argument that the relational
data model is inappropriate as a logical data model to represent time-varying information can be found
in [1]. Therefore, this paper proposes a new temporal data model based on the object-oriented data
model.

This paper is organized as follows, Section 2 recapitulates the most essential issues that were
commonly discussed in many existing temporal data models introduced in the literature. Section 3 starts
with a set of sample transactions, to give a brief explanation why the relational data model is not
appropriate as a base model to be extended for the manipulation of the time-varying information.
Then, the section introduces our new temporal object-oriented data model, using the same set of
sample transactions. Section 4 illustrates new operators that could be invoked in queries when retrieving
information from a temporal database. They are then followed by the syntax of a new temporal SQL
statement and a set of typical queries against a sample temporal database, which are assumed to be
created from the set of sample transactions. Related works are introduced in section 5, and this paper

ends with some concluding remarks in section 6.

2. Fundamental Issues Regarding Temporal Data Model

There have been lots of research for the past two decades on the temporal database, mainly

E14% BUR A Temporal Data Model and a Query Language Based on the OO data model 89

regarding how to represent the concept of time and regarding what operators to define that could be
used in a temporal query. That is, they defined their own temporal algebra and showed that how the
time-varying data can be manipulated in their temporal algebra. Though there are many desirable
properties that should be satisfied by a temporal database, however, it was shown that some of the
desirable properties cannot be satisfied at the same time [13]. So, in this section, we will introduce
only the most essential issues among them, discussed in many research papers, Issues to be discussed
here are models of time, kinds of time to support, kinds of temporal database, granularity for
timestamping, and major operations to be supported by temporal database systems,

2.1 Models of time

There are two kinds of models of time: continuous mode! vs discrete model, and linear model vs
branching model. Continuous model is to real number system, what discrete model is to integer number
system. Since it is not easy to represent continuous time in discrete computer systems, most papers on
temporal database adopt the discrete model [5], in which time is viewed as an infinite set of
consecutive non-decomposable units, which are referred to as chronons [13]. Chronon is the shortest
duration of time that is manageable by temporal database systems. Attribute values of an object (or
an entity) represent a state of the object, and the state remains the same before it changes when an
event occurs. This implies the state of an object lasts for some time (e.g., each state has a duration).
As such, capturing the history of all the changes of a state requires to represent both the value and
its valid time interval, which is a set of consecutive chronons.

Time in itself is linear, That is, for any two events, their occurring time instants can be compared,
to know which one occurs earlier than the other or whether they occurred at the same time, However,
in certain areas of applications, such as CAD, CASE or some engineering area, which are characterized
by complex data due to hierarchical structure and interrelationships within the hierarchy, it is more
important to keep information on which version of an artifact is after which other version. In this case,
time is non-linear. It is rather considered as branching. In literature, some models are suggested for
version control in CAD environments [4, 11] and some for version modeling and configuration

management in both temporal databases and versioned databases [19, 20, 22].
2.2 Kinds of Time to Support and Kinds of Temporal Databases
There are three different kinds of time, discussed in the literature: user-defined time, valid time, and

transaction time., Meaning of the user-defined time depends upon the application in which it is to be

used. It is just another attribute, which can store time-related information such as birth date.

90 Yongmoo Suh g g DL

Therefore, it is not supported by most temporal query languages. The notions of valid time and
transaction time are first introduced in [2] as effective time and registration time, respectively, Valid
time of a fact is the time when the fact is true in the real world. Other names for the notion of valid
time are real-world time, logical time, and intrinsic time. Transaction time of a fact is the time when
the fact is stored in a database. Other names for this notion of transaction time are extrinsic time,
physical time and registration time.

Depending upon whether valid time and/or transaction time are supported or not, databases are
classified as one of the four: snapshot, rollback, historical and temporal databases, Snapshot databases
do not support either valid time or transaction time. There is no way to perform retroactive changes to
and historical queries against the snapshot databases. Rollback databases support the transaction time
and historical databases support the valid time. Temporal databases support both valid and transaction
times, Historical and temporal databases support the historical queries and rollback and temporal
databases support the rollback operation. Snodgrass and Ahn [17] provides quite a good explanation of
the four types of databases, by making an analogy for each case. A snapshot database is compared to
the latest payroll stub, a rollback database to a collection of payroll stubs, a historical database to a
resume, and a temporal database to a collection of resumes, each marked by its prepared date. They
showed that in order not to lose any past information, we need to capture both the valid time and
transaction time, thereby making a zero-information-loss model as is mentioned in [7]. (Note that in a
rollback database, it is impossible to correct errors in the past, while in a historical database, no record
of corrected errors is kept.) However, most research on temporal databases assumes that their
databases support only the valid time, Historical database is updatable (retroactive or proactive changes
are possible), rollback database is append-only, and temporal database is both updatable and
append-only,

2.3 Granularity of Timestamping

To store the time-varying information in a database, we have to attach temporal information (eg.,
timestamp) to some part of the database, eg, a database, a relation, a tuple, an attribute, or each
value of a time-varying attribute [6]. Most frequently used among them are tuple timestamping and
attribute-value timestamping. Note that in the relational model, attribute-value timestamping cannot be
supported, because attribute-value timestamping implies a set value for each attribute. However,
attribute-value timestamping is more natural than tuple timestamping, because all time-varying
attributes of a relation do not have the same change rate and some attributes may not be
time-varying at all {5], and because when tuple timestamping is used, all information about a single
object cannot be stored in a single tuple.

Elak P A Temporal Data Model and a Query Language Based on the OO data model 91

Time instant, time interval or their combination can be used as a timestamp. Clifford and Tansel [5]
introduced the term lifespan (as an attribute to represent the duration time of a state of a tuple),
which is defined as a subset of a countably infinite set of time instants. So, it can be a time instant
or a time interval, They used both tuple timestamp and attribute timestamp, Clifford and Croker [3]
used both tuple lifespan and attribute-value lifespan. They have represented the lifespan as a set of
intervals. (They stated that representing time either as instant or as interval is a matter of
convenience, but we feel that it is more than that, because depending upon the representation of time,
temporal operators to be defined must be different and so must be the query language.) Lorenztos
[12] represented time as an interval in his interval extended relational model IXRM. Clifford and
Warren [6] have added new two attributes, STATE and EXISTS? to construct a completed relation
from static relations. STATE represents a time instant and EXISTS? represents whether a certain
tuple exists at a specific state, That is, they used instant timestamp. The completed relation has a
tuple for each entity for every state. Historical relation is defined to be the union of the completed
relations of all states. Gadia and Nair [7] used the notion of temporal element as value timestamp.
Temporal element is a finite union of intervals. Note that the set of all temporal elements is closed
under the usual set operations such as union, intersection and complement, while the set of all intervals
is not. Queries in systems which use interval timestamp tend to be more complex than in other
systems. Interval timestamp can also be represented using two attributes, say, START and END, as in
[21.

2.4 Major Operations to be Supported

There are new operations that need to be supported by a database system that supports the
manipulation of time-varying information. The classical operations for the relational data model should
be extended, so that the new version of those operations can be applied to the temporal database. In
other words, select, project and join operations should be extended in such a way that the original one
and the extended one are equal in the absence of time specification, And a new version should be
created for each set operation such as union, intersect and difference. A temporal database can be
drawn as a cube, created by accumulating two-dimensional tables along the third axis of time.
Operations common to most temporal data models are time-slice and rollback operations. Time-slice is
the operation of slicing the cube along the time axis, according to a given time interval and rollback
operation is the one, which takes the database back to the state as of some past time. One of the
reasons of retaining the historical data in a temporal database is to do trend analysis against the
database during a certain period of time. Therefore, there should be an operation to support this trend

analysis. The concept of moving window corresponds to such an operation, when implemented. These

92 Yongmoo Suh sENe

operations are invoked in the statements for data manipulation. Some of them led to new temporal
SQL statements, such as TSQL[14], TOSQLI[16], HSQL[18], etc.
Our temporal data model, temporal query language and operations required for our temporal data

model will be explained with examples in the following sections 3 and 4.

3. A Temporal Data Model based on Object-Oriented Model

We start with an explanation why the relational data model is not appropriate as a base model to be
extended to support the manipulation of time-varying information, using a set of sample transactions,
Then, we explains how the object-oriented data model can be extended to support the manipulation of

time-varying information. The same set of sample transactions will be used through out the paper.
3.1 Problems with Relational Data Model

As is said earlier, the relationl data model has been used most frequently as the underlying data
model, to be extended for the manipulation of time-varying information. However, the relational data
model does not seem to be the best choice. It is because the requirement that tables be in the first
normal form in the relational data model implies that a set value or a complex value consisting of
several values cannot be stored in an attribute of such tables. That is, it is not easy to store in such a
table a value of a time-varying attribute, which is basically a set of complex values. To explain this,

suppose we have the following set of transactions:

1) Kim started to work with salary 300, in D1 department, from Jan. 1992.

2) His salary was raised to 350, in Jan, 1993,

3) It was found in Feb, 1993, that his salary had to be raised to 330 instead of 350.
4) He moved to D2 department with a new salary 400, in July 1994,

5) His salary was raised to 500, in July 1995,

In the above series of example transactions, we have two time-varying information, salary and
department of an employee. It is not easy at all to store all this time-varying information in a single
table of the pure relational data model. That is, adding two attributes, from and fo, to a table is not
enough to store the information correctly, because we have plural time-varying attributes, and because
they do not vary at the same time. As such, we have to decompose the table into two tables,
emp-salary (name, salary) and emp-department (name, department), so that each table has only one

time-varying information. This decomposition results in the time-normalized tables, the concept of

Eidag BUR A Temporal Data Model and a Query Language Based on the OO data model 93

which was introduced in [14). However, even after the decomposition into time-normalized forms, we
still have some problems. That is, all information about an object cannot be stored in a single tuple
and join operations are required to get all information of an object. These problems can be resolved
with ease, if the object-oriented data mode] is selected as an underlying data model. For these reasons
and others, we have chosen the object-oriented data model as our base data model for supporting the

various manipulation of time-varying information,

3.2 Extension of Object-Oriented Data Model

The value of time-varying attribute is varying over time, as is implied by the name. Therefore, its
value is a set of (value and time-interval) pairs, where each pair represents that the value is valid
only for the duration of the time-interval. (Note that we are using attribute timestamping to represent
the valid time interval.) Time interval can be represented using two-attributes, for example, from and
to, each of which is a time point. As such, we can think of two classes, time-point and time-interval,
and a superclass of them, time, which can be defined as an abstract class, by collecting attributes and
methods, (e.g, =, or < operations), common to the two classes, time-point and time-interval. So, we
may define a time library, in which classes related to time are registered, together with operations that
could be invoked to perform some time-related calculations,

In extending the object-oriented data model to represent time-varying information, we need the
following two extensions. First, it should be possible for the database system to recognize which
attributes are time-varying among the attributes that a user defines by the CREATE statement,
Having recognized time-varying attributes, the database system creates a new class for each

time-varying attribute. Figure 1 is the schema diagram for the above transactions, including the time

time-interval

employee | el

name

{salary-t} —__ |
{department-t}] ™

salary
legend: \
department-t

class-hierarchy

salary-t

= class-composition department
hierarchy

Figure 1: a sample schema diagram

94 Yongmoo Suh gy SE

library, which will be described further in section 4.1.

Attributes whose names end with *-t' in Figure 1 indicate that they are time-varying attributes.
Employee class has two time-varying attributes, salary-t and department-t, from each of which a new
class with the same name as the attribute name is created by the system. Those classes, representing
time-varying attributes, inherit two additional attributes, from and to, from the class time-interval
predefined in the time library, thereby having three attributes. Therefore, when each employee object is
retrieved, it has three components: name, OID of salary-t and OID of department-t. Second, users
should be allowed to declare whether a class is historical or temporal. In case that users want to keep
all information about transactions, even about wrong transactions, they have to declare the classes
related to the transactions to be temporal, Values of instances of temporal classes will be stored with
two timestamps (e.g., the valid time interval and the transaction time point). If users declare classes to
be historical, the valid time interval is stored to the database along with the values, when inserting
instances to the historical classes, We should note that a temporal class consumes lots of storage,
because every transaction causes another instance to be created for the same object. For the above

example, a user has to define the employee temporal class as follows:

create temporal class employee as subclass of time-point

{
name string,
salary-t integer :month,
department-t string :day

b

In the above, ‘salary-t integer:month’ represents that the attribute salary-t is a time-varying
attribute, whose value is to be stored as an integer and whose time-interval (represented as from and
to, inherited from pre-defined class time-interval) is to be represented down to month (that is, month
and year). All time-varying attributes are set-valued, by default. On reading the above CREATE

statement, the system automatically generates two classes, salary-t and department-t as follows:

create historical class salary-t as subclass of time-interval
{

salary integer with granularity month
}
create historical class department-t as subclass of time-interval
{

department string with granularity day

Flag FI¥ A Temporal Data Model and a Query Language Based on the OO data model 95

Now. the above sample transactions are stored in our extended data model as follows: (Here we

represented time-varying attributes as a set of triplets, instead of OIDs.)

name salary-t department-t at
Kim {(300, 01/92, now)} {(D1, 01/92, now)} 01/01/92
{(300, 01/92, 12/92),
i , 01/92, 01/01/93
Kim (350, 01/93. now)} {(D1, 01/92, now)} /
{(300, 01/92, 12/92),
Ki D1, 01/92, 02/01/93
m (330, 01/93, now)} « now)}
{(300, 01/92, 12/92), {(D1, 01792, 06/94),
Ki 07/01/94
m (330, 01/93, now)} (D2, 07/94, now)}
(300, 01/92, 12/92),

D1, 01/92, 06/94),
Kim (330, 01/93, 06/95), u / /94) 07/01/75

, 07/94,
(500, 07/95, now)} (D2, 07/94, now)}

Each employee instance has a transaction time point and each time-varying attribute of the instance
has a set-value of (value, valid time interval) pairs. Note that an instance has been created for each
transaction and thus we do not lose any transaction information, including the second wrong
transaction, which is later corrected by the third transaction. If we define the class employee as a
historical class, we have only one instance, which is the same as the fifth instance in the above

without transaction time attribute at, as is shown below.

name salary-t department-t
{(300, 01/92, 12/92),
D1, 01/92, 06/94),
Kim (330, 01/93, 06/95), {((DZ 07// gi /);
(500, 07/95, now)} , 07/94, now

What if there are more than one time-varying attribute that are synchronously changing over time?
If we follow the above extension, we end up with as many historical classes as the number of
time-varying attributes. That is not desirable. We want the system allows users to define those
attributes in such a way that just one historical class is created by the system for those synchronously
changing time-varying attributes. For example, suppose two attributes salary and position change
always at the same time. In this case, a temporal class for these two synchronous attributes can be

created as follows:

96 Yongmoo Suh rafg

create temporal class employee as subclass of time-point
{
name string,

salary-t, position-t integer:string: month

This time, the system will automatically creates a class for the two time-varying attributes as

follows:

create historical class salary&position-t as subclass of time-interval
{
salary integer,
position string with granularity month

It is possible to store transaction time point together with valid time interval, as is suggested by
(10]. In that case, however, it takes longer time to rollback to a past time point. For this reason, we
have used instance-timestamping for transaction time, while we have used attribute-timestamping for
valid time interval. The granularity of the transaction time point can be adjusted, as is necessary. For
example, although it is mm/dd/yy in the above, it can be changed to a much smaller granule such as
mm/dd/yy hh:mm and mm/dd/yy hh:mm:ss,

4. A Temporal Query Language based on Object-Oriented
Model

This section explains three things: 1) time library, 2) new SQL select statement for temporal
database, and 3) queries using the new select statement.

4.1 Time Library

The basic form of the value of a time-varying attribute in our temporal data model is a set of
(value, from, to) triplets. That is, in each element of the set, a value is paired with its valid time
interval, which is represented by two instance variables, from and to. For the convenience of users, the

following operations had better be defined.

®lag HBIN A Temporal Data Model and a Query Language Based on the OO data model 97

1) operations dealing with time intervals:

@ operations to deal with two time intervals such as before, after, covers, overlaps, equals,
adjacent, intersection, combine, etc

® elapsedX(TI) to compute the number of days, months, or years, given a time interval, TI(X
can be Days, Months, Years, etc)

® getFrom(TI) or getTO(TI) to get the beginning or ending point from a time interval, TI

@ getTime(TVA) to extract the time interval from a time-varying attribute, TVA

® getTime(O) to extract the time interval of an object O, which is computed by ORing the
getTime(TVA) of all time-varying attribute TVA of the objct O

® getTime(B) to extract the time interval, during which the boolean expression B is true.

® time slice operation, which is to slice the time dimension, given a valid time interval

Operations belonging to @, @, and @ need to be defined as methods of the time-interval class of
the time library, and operations belonging to @, ® and ® as methods of an abstract class, which is
defined as a superclass of all the temporal classes. Time slicing is defined as a new clause in our
temporal SELECT statement, which is to be introduced in section 4.2. We don’t think that the details
of using these operations need to be explained here.

2) operations dealing with time points:

makelnterval, given two time points

@ operations to extract a component of a given time point (For example, getYear(TP) returns
1996 if TP is 12/25/96.)

@ operations to deal with now, which is a variable representing the current time point

@ predecessor and successor operations that return the previous time point and next time point in
the linear time line, respectively (It should return different values, depending on the time
granularity.)

@ rollback operation

Operations belonging to ®, @, @ and @ needs to be defined as methods of the time-point class of
the time library, and rollback operation is added as a new clause to our temporal SELECT statement.

3) operations that will be used to convert the basic form
® operation that changes the basic form, {(value, from, to)} of a value of TVA, into the other
form {(value, {(from, to)})}

98 Yongmoo Suh g g SR

The new form is good especially when one wants to know all the time intervals, during which a
TVA has the same value. This operation is also defined as a method of the abstract class, which is

defined as a superclass of all the temporal classes,

4) operations dealing with sets:

® operations that deal with sets of specific forms {(value, from, to)} and {(value, {(from, to)})}

For example, expand operation on a set of the first form will expand a time interval into many time
point intervals, each of which is an interval whose starting time point is the same as the ending time
point. On the contrary, coalesce operation on a set of the second form will coalesce two intervals if

they are adjacent or overlapping.

5) basic relational operations extended:

® temporal versions of the basic relational operations such as join and selection

In summary, among these operations to be defined for the convenience of users, some of them can
be defined as methods of some class in time library, and some others are defined as methods of a
special abstract class, which is a superclass of all the classes for the time-varying attributes. The time
library can be depicted as Figure 2, in which numbers represent the operations just introduced in this
section. Operations corresponding to the numbers (7 and 12) missing in the Figure (eg. time slice,
rollback) and temporal versions of basic relational operators are supported by the new SELECT
statement as special clauses, TOPs (stands for temporal operators) represents the abstract superclass of

all the classes for the time-varying attributes,

time time-library ’
time-point time-interval TOPs
at from, to
8, 9, 10, 11 1, 2, 3 4, 5, 6,
13, 14

classes for time-varying attributes inherit
methods (operations) and attributes

Figure 2: a time library and TVA classes

Elak FIu A Temporal Data Model and a Query Language Based on the OO data model 99

4.2 Syntax of a New SQL Select Statement

A new SELECT statement to be used to retrieve information from a temporal database has the
following syntax. Its semantics is similar to that of the snapshot version, except for a few new clauses

which are added to support the manipulation of time-varying information.

select target_ list
from class__list
where conditional__expression

moving window window__time-span

when temporal__condition

valid during valid__time_ period

as of transaction__time__ point

group by attribute_ list

having conditional__expression__with__aggregate function

Moving window clause is added to make it easy to do trend analysis during a given time interval,
by computing and comparing values for each sub-interval of the interval. When clause is used to
specify a temporal condition, which is a condition expressed in terms of time-varying aftribute. This
corresponds to the temporal version of the restriction operation in the relational data model. This when
clause and the from clause having two or more classes can be used to perform a temporal join
operation. Valid during clause is used either to specify the time interval for the time-slicing operation
or to assign the valid time interval for the retrieved information. Finally, as of clause is used when one

wants to carry out the rollback operation to a past time point.

4.3 Temporal Queries

The above explanation of our temporal query language can be complemented by issuing temporal
queries against some temporal database. The schema and the database that we have defined in section
3 are to be referenced in this section.

query 1: “What was Kim's salary in Oct., 1992?"

select st.salary

from (select salary-t from employee

100 Yongmoo Suh BER8

where name = ‘Kim') as t(st)V
when getTime(st) overlap (10/01/1992, 10/31/1992);

In the above, ‘from’ clause has a subquery, whose result is defined as a table, t(st), which is a table,
t, having a single column, st. t(st) is a table of OID's, each of which is an ID of an instance,
belonging to the class salary-t. The above query first calculates t(st), and then for each st (eg., OID)
in the table, it checks the condition specified in the ‘when’ clause, to see whether the corresponding
instance has a valid-time interval overlapping with the interval (10/01/1992, 10/31/1992). The
valid-time interval is calculated by invoking the getTime method, inherited from TOPS class (see
Figure 2). This query returns the salary of the instance which satisfies the condition. If one wants to

know the same information as is known in January 1993, the next query will do.
query 2: “What was Kim’s salary in Oct., 1992, as best known in Jan, 1993?"

select st.salary
from (select salary-t
from employee
where name = ‘Kim’) as t(st)
when getTime(st) overlap (10/01/1992, 10/31/1992)
as of 1/1993;

The ‘as of clause has the effect of ignoring all the transactions that were performed after January,
1993. This query will be processed in the same way as query 1 is processed, except that the last three

instances of the employee class will not be taken into account in this case.
query 3: “When has Kim moved to D2 department?”

select getFrom(dt) /* returns the starting point of an interval */
from (select department-t

from employee

where name = Kim') as t(dt)

where dt.department = ‘D2’;

1) This feature of defining the result of a subquery as a table is supported by UniSQL/X.

Flag Flg A Temporal Data Model and a Query Language Based on the OO data model 101

query 4: “Retrieve all the information of Kim during 1992 and 1993.”

select
from
where

valid during

*

employee
name = 'Kim'
(171992, 12/1993):

‘valid during’ clause is used to slice the database along the time dimension. This is so-called

time-slice operation. If one wants to get information about Kim for the last five years, the valid during

clause should be changed to ‘valid during (now - Syears, now)’, where ‘now - Syears is the day 5

years ago from now, which can be calculated by invoking a method defined in the time-point class of

the time library.

query 5: “How much is Kim's average salary when he was in D1 department?”

select

from

where

when

Avg(st.salary)

(select salary-t

from employee

where name = ‘Kim") as t(st),
(select department-t

from employee

where name = 'Kim’) as t(dt)
dt.department = ‘D1’
getTime(st) overlap getTime(dt):

This query first computes t(st) and t(dt) by selecting the salary-t and department-t attributes of

the employee whose name is Kim, retrieves st's which satisfy the conditions specified in the ‘where’

and ‘when’ clauses, then returns the average salary of those st's.

query 6: “How long had Kim been in D1 department?”

select

from

getNoMonths(get Time(dt))
(select department-t
from employee

where name = ‘Kim') as t(dt)

102 Yongmoo Suh sEibg

where dt.department = ‘D1":

getNoMonths returns the number of months during a time interval, which is returned by the

getTime operation,
query 7: “When has Kim's salary been raised the most?”

select max(st.salary - next(st).salary), window
from (select sortTime(expand Year(salary-t))
from employee
where name = ‘Kim') as t(st)

moving window 1 year.:

expandYear operation expands the time interval of salary-t instance and sort7ime operation sorts its
result by the time. This kind of query could be useful, especially when performing a trend analysis

during a certain period of time interval,

Other calculations that are too complex to be dealt with by a single statement, can be performed,
using a nested query, set operations, interpreter variables to store temporary result, or their

combination, as is used in the conventional systems.

5. Related Works

Though most researches on temporal database are done on the basis of the relational data model,
there are some which take the object-oriented data model as the underlying data model. An
object-oriented temporal model [16] is one based on object-based ER model. They have defined a type
lattice, whose root is Object, under which there are Primitive-types (e.g., integer, real, etc), Collections
(e, set[T], tuple, sequence[T]), and Class. New types are added as follows: Time is added as a
subclass of Primitive-types, TimeSequence[T] as a subclass of Sequence[T], and NV-class and
V-class as subclasses of Class. Classes of time-varying objects are defined as subclasses of V-class, and
domains of their time-varying attributes are defined as subclasses of TS[T]. Attribute timestamp is
attached to the instances of those subclasses, and three different kinds of time are stored as a
timestamp: valid time interval, record time instant, and event time instant, SQL is extended into a
temporal object-oriented SQL, TOSQL, which has new temporal clauses such as WHEN,
TIME-SLICE, and MOVING-WINDOW. Messages can appear in SELECT and WHERE clauses, and

mlaks FUH A Temporal Data Model and a Query Language Based on the OO0 data model 103

messages can be nested. FROM clause of the standard SQL is replaced by the FOR EACH clause, in
order to refer to a particular object. Notice that attaching three different kinds of timestamp
(transaction time, valid time and event time) to an attribute makes it difficult to perform rollback
operations and that the event time may not be so useful except for a specific application, Also, notice
that this model does not allow the same timestamps to be shared by the synchronous attributes,

In [22]. properties of time-varying objects are modeled as functions, each of which returns another
function, that returns, given a time object, the value of the corresponding property. They have defined
a hierarchy of abstract time types, with point as a supertype of all types, and another hierarchy of set
types, which are defined for each time type, with {point} as supertype of them. Their model supports
both attribute timestamp and object timestamp. Because no special constructs (e.g., those for slice,
rollback, etc) are defined for temporal queries, the same language can be used for both temporal and
non-temporal queries. However, query optimization may become more difficult, and their queries, which
are basically nested-for loops, may be uncomfortable to the users of relational or object-oriented
database systems, who have been using SQL-type query languages.

Another temporal model is defined based on the concept of time sequence in [21). Time sequence is
a sequence linearly ordered in time, and a collection of time sequences for the objects that belong to
the same class is called time sequence collection, TSC. Each TSC has three components, surrogate
domain, time domain and attribute domain and is defined to have some properties such as granularity,
lifespan, and interpolation function type. A data manipulation language is defined which is a variant of
SQL but provides diverse commands for data manipulation, Though their model is independent of any
logical model, they have shown that if their model is represented in the relational model, they cannot
avoid performing join operations to get information of an object when it has several temporal attributes.
As such, they have defined another concept, family of TSCs with same surrogate. Instead of
representing their model in relational model, it would be natural to represent it in object-oriented model

and then there would be no need to define the concept, family.

6. Summary and Future Works

Having discussed the most essential issues that are common to many research papers on temporal
database, this paper illustrated why the relational data model is not appropriate as a data model to
support the manipulation of time-varying information. Then, a way of extending the object-oriented
data model is explained using a sample database which is assumed to be created from a set of sample
transactions. In the extended data model, attribute timestamp is used for valid time interval, while
instance timestamp is used for transaction time point. Users are allowed to specify whether a class is
to be either historical or temporal. The extended data model is further explained by issuing temporal

104 Yongmoo Suh RERS

queries against the sample database, following the syntax of the new select statement. To provide
convenience to the users of temporal databases, operations that seem to be used frequently by the
users are collected into a time library.

Although we leave out the detail explanation on how relational operations can be integrated in the
temporal queries and on the semantics of newly added temporal operations, it may be desirable to add
such explanation, to some extent, with examples.

Compared with related works, our work has the following characteristics: 1) it has the flexibility of
allowing syhchronous time-varying attributes to be defined so that they share the same timestamp,
which makes querying in terms of such attributes simpler than otherwise, 2) it is at user's disposal to
define a class either to be historical or to be temporal, and 3) typical operations required for the
manipulation of time-varing information are collected into a time library, though they need more
collection and tuning thereof.

Many things remain to be done, Modal operators such as always, offen and since, need to be defined
so that they can be used in a variety of query expressions, Also, there should be further research on
temporal constraints, temporal query optimization, storage structure and access methods for the
temporal database, and so on. Researches on temporal database and on multidatabase could be utilized
for the creation and manipulation of data warehouse, which is built to be used for corporate decision
making,

REFERENCES

(1] M. Atkinson, F. Bancithon, D. Dewitt, K. Dittrich, D. Maier, and S. Zdonik, The Object-Oriented
Database System Manifesto, Elsevier Science Publishers, Amsterdam, 1990

(2] J. Ben-Zvi, The Time Relational Model, Ph. D. thesis, Computer Science Department, UCLA,
1982

[3] J. Clifford and A. Croker, “The Historical Relational Data Model (HRDM) and Algebra based on
Lifespan,” proceedings of the third International Conference on Data Engineering, pp Feb,, 1987

[4] H-T. Chou and W. Kim, “A Unifying Framework for Version Control in a CAD Environment,”
VLDB, 1986

(5] F. Clifford and A. U. Tansel, “On an Algebra for Historical Relational Databases: Two Views.”,
DProceedings of ACM SIGMOD, pp 247-265, May 1985

(6] J. Clifford and D. S. Warren, “Formal Semantics for Time in Databases,” ACM TODS 8(2). June
1983

(7] Shashi K. Gadia and Sunil S. Nair, “Temporal Databases: A Prelude to Parametric Data.”, in
Temporal Databases ed, by Tansel et al, 1993

®14% Pl A Temporal Data Model and a Query Language Based on the OO data model 105

[8] S. K. Gadia, “A Homogeneous Relational Model and Query Languages for Temporal Databases,”
ACM TODS, 13(4), Dec. 1988, pp 418-448

[9] S. K. Gadia and C. S. Yeung, “A Generalized Model for a Relational Temporal Databases,” ACM
SIGMOD, 1988

[10] Christian S. Jensen and Richard T. Snodgrass, “Semantics of Time-Varying Information”,
Information Systems, 21(4), pp 311-352, 1996

[11] R. H Katz, “Toward a Unified Framework for Version Modeling in Engineering Databases,”
ACM Computing Surveys, 22(4), pp 376-408, Dec. 1990

[12] Nikos A. Lorenztos, “The Interval-extended Relational Model and Its Application to Valid-time
Databases,” in Temporal Databases ed. by Tansel et al., 1993

{13] E. McKensie Jr. and R. Snodgrass, “Evaluation of Relational Algebras Incorporating the Time
Dimension in Databases,” ACM Computing Surveys, 23(4), pp 501-543, Dec. 1991

[14] S. B. Navathe and R. Ahmed, “A Temporal Relational Model and a Query Language,”
Information Sciences, Vol. 49, pp 147-175, 1989

[15] G. Ozsoyoglu and R. T. Snodgrass, “Temporal and Real-time Databases: a survey”, IEEE
Transactions on Knowledge and Engineering, 7(4), pp 513-532, 1995

[16] Ellen Rose and Arie Segev, “TOODM - A Temporal Object-Oriented Data Model with Temporal
Constraints”, 10-th International Conference on ER Approach, Oct., 1991

{17] R. Snodgrass and 1. Ahn, “Temporal Databases,” IEEE Computer, 19(9), pp 35-42, Sep. 1986

18] N. L. Sarda, “HSQL: A Historical Query Language”, in Temporal Databases ed. by Tansel et al,
1993

[19] E. Sciore, “Using Annotations to Support Multiple Kinds of Versioning in an Object-Oriented
Database system,” ACM TODS, 16(3), pp 417-438, 1991

[20] E. Sciore, “Versioning and Configuration Management in an Object-Oriented Data Model,” VLDB
Journal, 3(1), pp 7-106, 1994

[21] Arie Segev and Arie Shoshani, “A Temporal Data Model Based on Time Sequences”, in
Temporal Databases ed. by Tansel et al., 1993

[22] G. Wuu and U. Dayal, “A Uniform Model for Temporal Object-Oriented Databases,” Proceedings
of the eighth International Conf. on Data Engineering, pp 583-593, 1992

