• Title/Summary/Keyword: Temporal Mining

Search Result 120, Processing Time 0.026 seconds

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.

Discovering Temporal Relation Considering the Weight of Events in Multidimensional Stream Data Environment (다차원 스트림 데이터 환경에서 이벤트 가중치를 고려한 시간 관계 탐사)

  • Kim, Jae-In;Kim, Dae-In;Song, Myung-Jin;Han, Dae-Young;Hwang, Bu-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.99-110
    • /
    • 2010
  • An event means a flow which has a time attribute such as a symptom of patient. Stream data collected by sensors can be summarized as an interval event which has a time interval between the start-time point and the end-time point in multiple stream data environment. Most of temporal mining techniques have considered only the frequent events. However, these approaches may ignore the infrequent event even if it is important. In this paper, we propose a new temporal data mining that can find association rules for the significant temporal relation based on interval events in multidimensional stream data environment. Our method considers the weight of events and stream data on the sensing time point of abnormal events. And we can discover association rules on the significant temporal relation regardless of the occurrence frequency of events. The experimental analysis has shown that our method provide more useful knowledge than other conventional methods.

An Efficient Algorithm for Mining Frequent Sequences In Spatiotemporal Data

  • Vhan Vu Thi Hong;Chi Cheong-Hee;Ryu Keun-Ho
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.61-66
    • /
    • 2005
  • Spatiotemporal data mining represents the confluence of several fields including spatiotemporal databases, machine loaming, statistics, geographic visualization, and information theory. Exploration of spatial data mining and temporal data mining has received much attention independently in knowledge discovery in databases and data mining research community. In this paper, we introduce an algorithm Max_MOP for discovering moving sequences in mobile environment. Max_MOP mines only maximal frequent moving patterns. We exploit the characteristic of the problem domain, which is the spatiotemporal proximity between activities, to partition the spatiotemporal space. The task of finding moving sequences is to consider all temporally ordered combination of associations, which requires an intensive computation. However, exploiting the spatiotemporal proximity characteristic makes this task more cornputationally feasible. Our proposed technique is applicable to location-based services such as traffic service, tourist service, and location-aware advertising service.

  • PDF

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

Design of Efficient Query Language to support Local information administration environment (지역정보 관리 환경을 지원하기 위한 효율적인 질의 언어의 설계)

  • Kang, Sung-Kwan;Rhee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.36-40
    • /
    • 2008
  • SIMS manages data for various spatial and non-spatial as integral management system to support space information administration environment and support several application works. Without being limited to spatial data that existent spatial Data Mining question language advances handling in this paper, did so that can find useful information from various data connected with automatically data collection, artificial satellite side upside service, remote sensing, GPS. Mobile Computing and data about Spatio-Temporal. Also, we designed spatial Data Mining query language that support a spatial Data Mining exclusive use system based on SIMS.

  • PDF

Temporal Association Rules Based on Item Time Interval (항목 발생 간격을 고려한 Temporal 연관규칙)

  • Lee Kyong-Won;Kim Jae-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.46-52
    • /
    • 2005
  • In this paper, we present a temporal association rule based on item time intervals. A temporal association rule is an association rule that holds specific time intervals. If we consider itemset in the frequently purchased period, we can discover more significant itemset satisfying minimum support. Because the previous study did not consider the time interval between purchased item, it could find itemset that did not satisfy the minimum support in case some item was frequently purchased in a specific period and rarely or not purchased in other period. Our approach uses interval support which is counted by period with support and confidence in the association rule to discovery large itemset.

Workflow Process-Aware Data Cubes and Analysis (워크플로우 프로세스 기반 데이터 큐브 및 분석)

  • Jin, Min-hyuck;Kim, Kwang-hoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.83-89
    • /
    • 2018
  • In workflow process intelligence and systems, workflow process mining and analysis issues are becoming increasingly important. In order to improve the quality of workflow process intelligence, it is essential for an efficient and effective data center storing workflow enactment event logs to be provisioned in carrying out the workflow process mining and analytics. In this paper, we propose a three-dimensional process-aware datacube for organizing workflow enterprise data centers to efficiently as well as effectively store the workflow process enactment event logs in the XES format. As a validation step, we carry out an experimental process mining to show how much perfectly the process-aware datacubes are suitable for discovering workflow process patterns and its analytical knowledge, like enacted proportions and enacted work transferences, from the workflow process enactment event histories. Finally, we confirmed that it is feasible to discover the fundamental control-flow patterns of workflow processes through the implemented workflow process mining system based on the process-aware data cube.

Discovering Temporal Work Transference Networks from Workflow Execution Logs

  • Pham, Dinh-Lam;Ahn, Hyun;Kim, Kwanghoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • Workflow management systems (WfMSs) automate and manage workflows, which are implementations of organizational processes operated in process-centric organizations. In this paper, wepropose an algorithm to discover temporal work transference networks from workflow execution logs. The temporal work transference network is a special type of enterprise social networks that consists of workflow performers, and relationships among them that are formed by work transferences between performers who are responsible in performing precedent and succeeding activities in a workflow process. In terms of analysis, the temporal work transference network is an analytical property that has significant value to be analyzed to discover organizational knowledge for human resource management and related decision-making steps for process-centric organizations. Also, the beginning point of implementinga human-centered workflow intelligence framework dealing with work transference networks is to develop an algorithm for discovering temporal work transference cases on workflow execution logs. To this end, we first formalize a concept of temporal work transference network, and next, we present a discovery algorithm which is for the construction of temporal work transference network from workflow execution logs. Then, as a verification of the proposed algorithm, we apply the algorithm to an XES-formatted log dataset that was released by the process mining research group and finally summarize the discovery result.

Finding Association Rules based on the Significant Rare Relation of Events with Time Attribute (시간 속성을 갖는 이벤트의 의미있는 희소 관계에 기반한 연관 규칙 탐사)

  • Han, Dae-Young;Kim, Dae-In;Kim, Jae-In;Song, Myung-Jin;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.691-700
    • /
    • 2009
  • An event means a flow which has a time attribute such as the a symptom of patients, an interval event has the time period between the start-time-point and the end-time-point. Although there are many studies for temporal data mining, they do not deal with discovering knowledge from interval event such as patient histories and purchase histories. In this paper, we suggest a method of temporal data mining that finds association rules of event causal relationships and predicts an occurrence of effect event based on discovered rules. Our method can predict the occurrence of an event by summarizing an interval event using the time attribute of an event and finding the causal relationship of event. As a result of simulation, this method can discover better knowledge than others by considering a lot of supports of an event and finding the significant rare relation on interval events which means an essential cause of an event, regardless of an occurrence support of an event in comparison with conventional data mining techniques.

Mining Generalized Temporal Patterns in Temporal Databases (시간지원 데이터베이스에서의 시간 계층을 이용한 일반화된 패턴 정보 탐사)

  • 이강태;이준욱;남광우;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.232-233
    • /
    • 1998
  • 이 논문에서는 시간지원 데이터베이스를 대상으로 하여 시간 간격과 시간 위상을 지닌 데이터에서의 정보를 탐사한다. 그리고 시간지원 데이터베이스에서의 시간 정보 유형을 제시하고 이에 따라 탐사되는 패턴의 유형을 분류한다. 또한 시간에 대한 계층적 구조인 시간 계층을 도입하고 이를 이용하여 각 항목의 유효시간 정보를 일반화시킨다. 시간 계층에 의한 유효시간의 일반화에 있어서 발생하는 시간 정보 유형의 변화와 패턴 유형의 변화를 살펴본다. 그리고 시간 간격 변화에 따른 패턴 정보의 발견을 예를 들어 기술한다. 이 논문에서는 시간 계층을 이용하여 시간 간격을 변화시킬 경우 발견되는 새로운 유형의 패턴 지식을 탐사하고 이를 제시한다.