• Title/Summary/Keyword: Temporal Mining

Search Result 120, Processing Time 0.029 seconds

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Study of Temporal Data Mining for Transformer Load Pattern Analysis (변압기 부하패턴 분석을 위한 시간 데이터마이닝 연구)

  • Shin, Jin-Ho;Yi, Bong-Jae;Kim, Young-Il;Lee, Heon-Gyu;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1916-1921
    • /
    • 2008
  • This paper presents the temporal classification method based on data mining techniques for discovering knowledge from measured load patterns of distribution transformers. Since the power load patterns have time-varying characteristics and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Therefore, we propose a temporal classification rule for analyzing and forecasting transformer load patterns. The main tasks include the load pattern mining framework and the calendar-based expression using temporal association rule and 3-dimensional cube mining to discover load patterns in multiple time granularities.

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

A Comparison of Performance between STMP/MST and Existing Spatio-Temporal Moving Pattern Mining Methods (STMP/MST와 기존의 시공간 이동 패턴 탐사 기법들과의 성능 비교)

  • Lee, Yon-Sik;Kim, Eun-A
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.49-63
    • /
    • 2009
  • The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.

  • PDF

Temporal Associative Classification based on Calendar Patterns (캘린더 패턴 기반의 시간 연관적 분류 기법)

  • Lee Heon Gyu;Noh Gi Young;Seo Sungbo;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.567-584
    • /
    • 2005
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from temporal data. Association rules and classification are applied to various applications which are the typical data mining problems. However, these approaches do not consider temporal attribute and have been pursued for discovering knowledge from static data although a large proportion of data contains temporal dimension. Also, data mining researches from temporal data treat problems for discovering knowledge from data stamped with time point and adding time constraint. Therefore, these do not consider temporal semantics and temporal relationships containing data. This paper suggests that temporal associative classification technique based on temporal class association rules. This temporal classification applies rules discovered by temporal class association rules which extends existing associative classification by containing temporal dimension for generating temporal classification rules. Therefore, this technique can discover more useful knowledge in compared with typical classification techniques.

Discovering Temporal Relation Rules from Temporal Interval Data (시간간격을 고려한 시간관계 규칙 탐사 기법)

  • Lee, Yong-Joon;Seo, Sung-Bo;Ryu, Keun-Ho;Kim, Hye-Kyu
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • Data mining refers to a set of techniques for discovering implicit and useful knowledge from large database. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering knowledge from temporal database, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treat problems for discovering temporal pattern from data which are stamped with time points and do not consider problems for discovering knowledge from temporal interval data. For example, there are many examples of temporal interval data that it can discover useful knowledge from. These include patient histories, purchaser histories, web log, and so on. Allen introduces relationships between intervals and operators for reasoning about relations between intervals. We present a new data mining technique that can discover temporal relation rules in temporal interval data by using the Allen's theory. In this paper, we present two new algorithms for discovering algorithm for generating temporal relation rules, discovers rules from temporal interval data. This technique can discover more useful knowledge in compared with conventional data mining techniques.

  • PDF

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.