• Title/Summary/Keyword: Temporal Data Mining

Search Result 85, Processing Time 0.025 seconds

Trajectory Search Algorithm for Spatio-temporal Similarity of Moving Objects on Road Network (도로 네트워크에서 이동 객체를 위한 시공간 유사 궤적 검색 알고리즘)

  • Kim, Young-Chang;Vista, Rabindra;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.59-77
    • /
    • 2007
  • Advances in mobile techknowledges and supporting techniques require an effective representation and analysis of moving objects. Similarity search of moving object trajectories is an active research area in data mining. In this paper, we propose a trajectory search algorithm for spatio-temporal similarity of moving objects on road network. For this, we define spatio-temporal distance between two trajectories of moving objects on road networks, and propose a new method to measure spatio-temporal similarity based on the real road network distance. In addition, we propose a similar trajectory search algorithm that retrieves spatio-temporal similar trajectories in the road network. The algorithm uses a signature file in order to retrieve candidate trajectories efficiently. Finally, we provide performance analysis to show the efficiency of the proposed algorithm.

  • PDF

Temporal Interval Refinement for Point-of-Interest Recommendation (장소 추천을 위한 방문 간격 보정)

  • Kim, Minseok;Lee, Jae-Gil
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.86-98
    • /
    • 2018
  • Point-of-Interest(POI) recommendation systems suggest the most interesting POIs to users considering the current location and time. With the rapid development of smartphones, internet-of-things, and location-based social networks, it has become feasible to accumulate huge amounts of user POI visits. Therefore, instant recommendation of interesting POIs at a given time is being widely recognized as important. To increase the performance of POI recommendation systems, several studies extracting users' POI sequential preference from POI check-in data, which is intended for implicit feedback, have been suggested. However, when constructing a model utilizing sequential preference, the model encounters possibility of data distortion because of a low number of observed check-ins which is attributed to intensified data sparsity. This paper suggests refinement of temporal intervals based on data confidence. When building a POI recommendation system using temporal intervals to model the POI sequential preference of users, our methodology reduces potential data distortion in the dataset and thus increases the performance of the recommendation system. We verify our model's effectiveness through the evaluation with the Foursquare and Gowalla dataset.

Emerging Gender Issues in Korean Online Media: A Temporal Semantic Network Analysis Approach

  • Lee, Young-Joo;Park, Ji-Young
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.2
    • /
    • pp.118-141
    • /
    • 2019
  • In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.

Non-Duplication Loading Method for supporting Spatio-Temporal Analysis in Spatial Data Warehouse (공간 데이터웨어하우스에서 시공간 분석 지원을 위한 비중복 적재기법)

  • Jeon, Chi-Soo;Lee, Dong-Wook;You, Byeong-Seob;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.

  • PDF

gCRM and Spatial Data Mining (gCRM과 공간데이타마이닝)

  • Hwang, Jung-Rae;Li, Ki-Joune
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.38-44
    • /
    • 2002
  • 고객관계관리(CRM)나 마케팅과 같은 경영방식에서도 대용량의 공간 데이터베이스를 사용하는 지리정보시스템(GIS)과 같은 응용분야를 접목하고 있다. gCRM은 지리정보시스템과 고객관계관리를 결합한 것으로, 이러한 실정을 단적으로 보여 주고 있는 경영방식이다. gCRM은 대용량의 데이터베이스로부터 관심 있는 분야를 찾아내고 분석하게 된다. 그러기 위해서는 데이터마이닝이라는 기술이 필요하다. 하지만, gCRM은 일반적인 데이터베이스뿐만 아니라 공간 데이터베이스 역시 많이 사용되어진다. 이러한 공간데이터베이스로부터 관심 있는 부분이나 관계 그리고 특성 등을 찾아내기 위해서는 공간데이타마이닝이 요구된다. 본 논문에서는 gCRM 솔루션들의 기능을 중심으로 다양한 공간데이타마이닝 기법과 어떠한 관계가 있는지를 살펴봄으로써 gCRM과 공간데이타마이닝이 접목할 수 있는 부분에 대하여 정리하였다.

  • PDF

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

Crisis Management Analysis of Foot-and-Mouth Disease Using Multi-dimensional Data Cube (다차원 데이터 큐브 모델을 이용한 구제역의 위기 대응 방안 분석)

  • Noh, Byeongjoon;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.565-573
    • /
    • 2017
  • The ex-post evaluation of governmental crisis management is an important issues since it is necessary to prepare for the future disasters and becomes the cornerstone of our success as well. In this paper, we propose a data cube model with data mining techniques for the analysis of governmental crisis management strategies and ripple effects of foot-and-mouth(FMD) disease using the online news articles. Based on the construction of the data cube model, a multidimensional FMD analysis is performed using on line analytical processing operations (OLAP) to assess the temporal perspectives of the spread of the disease with varying levels of abstraction. Furthermore, the proposed analysis model provides useful information that generates the causal relationship between crisis response actions and its social ripple effects of FMD outbreaks by applying association rule mining. We confirmed the feasibility and applicability of the proposed FMD analysis model by implementing and applying an analysis system to FMD outbreaks from July 2010 to December 2011 in South Korea.

Prediction of Consumer Propensity to Purchase Using Geo-Lifestyle Clustering and Spatiotemporal Data Cube in GIS-Postal Marketing System (GIS-우편 마케팅 시스템에서 Geo-Lifestyle 군집화 및 시공간 데이터 큐브를 이용한 구매.소비 성향 예측)

  • Lee, Heon-Gyu;Choi, Yong-Hoon;Jung, Hoon;Park, Jong-Heung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.74-84
    • /
    • 2009
  • GIS based new postal marketing method is presented in this paper with spatiotemporal mining to cope with domestic mail volume decline and to strengthening competitiveness of postal business. Market segmentation technique for socialogy of population and spatiotemporal prediction of consumer propensity to purchase through spatiotemporal multi-dimensional analysis are suggested to provide meaningful and accurate marketing information with customers. Internal postal acceptance & external statistical data of local districts in the Seoul Metropolis are used for the evaluation of geo-lifestyle clustering and spatiotemporal cube mining. Successfully optimal 14 maketing clusters and spatiotemporal patterns are extracted for the prediction of consumer propensity to purchase.

  • PDF

Mining Loot Box News : Analysis of Keyword Similarities Using Word2Vec (확률형 아이템 뉴스 마이닝 : Word2Vec 활용한 키워드 유사도 분석)

  • Kim, Taekyung;Son, Wonseok;Jeon, Seongmin
    • Journal of Information Technology Services
    • /
    • v.20 no.2
    • /
    • pp.77-90
    • /
    • 2021
  • Online and mobile games represent digital entertainment. Not only the game grows fast, but also it has been noted for unique business models such as a subscription revenue model and free-to-play with partial payment. But, a recent revenue mechanism, called a loot-box system, has been criticized due to overspending, weak protection to teenagers, and more over gambling-like features. Policy makers and research communities have counted on expert opinions, review boards, and temporal survey studies to build countermeasures to minimize negative effects of online and mobile games. In this process, speed was not seriously considered. In this study, we attempt to use a big data source to find a way of observing a trend for policy makers and researchers. Specifically, we tried to apply the Word2Vec data mining algorithm to news repositories. From the findings, we acknowledged that the suggested design would be effective in lightening issues timely and precisely. This study contributes to digital entertainment service communities by providing a practical method to follow up trends; thus, helping practitioners have concrete grounds for balancing public concerns and business purposes.

A GEOSENSOR FILTER FOR PROCESSING GEOSENSOR QUERIES ON DATA STREAMS

  • Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.119-121
    • /
    • 2008
  • Pattern matching is increasingly being employed in various researches as health care service, RFID-based system, facility management, and surveillance. Geosensor filter correlates a data stream to match specific patterns in distribution environments. In this paper, we present a geosensor query language to represent efficiently declarative geosensor query. Geosensor operators are proposed to use for fast query processing in terms of spatial and temporal area in distribution environments. We also propose a geosensor filter to match new query predicates into incoming stream predicates. Our filter can reduce the volume of transmission data and save power consumption of sensors. It can be utilized the stream data mining system to process in real-time various data as location, time, and geosensor information in distribution environments.

  • PDF