• Title/Summary/Keyword: Templated grain growth

Search Result 9, Processing Time 0.026 seconds

Piezoelectric properties of (Bi0.5Na0.5)TiO3-BaTiO3 ceramics prepared by reactive templated grain growth method (Reactive Templated Grain Growth법에 의해 제조된 (Bi0.5Na0.5)TiO3-BaTiO3 세라믹스의 압전 특성)

  • Ahn, Byung-Guk
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • Crystallographically {h00}-oriented $0.94(Bi_{0.5}Na_{0.5})TiO_{3}-0.06BaTiO_{3}$ (0.94BNT-0.06BT) ceramics was prepared by the Reactive Templated Grain Growth (RTGG) method using the $Bi_{4}Ti_{3}O_{12}$ template. The sheets prepared by tape-casting of slurries containing the templates and starting materials are cut, laminated, and pressed. Then burn-out and sintering was conducted. Also, to compare with the 0.94BNT-0.06BT ceramics prepared by the RTGG method another 0.94BNT-0.06BT ceramics was prepared by the solid-state method. In the optimum of this experiments range, the degree of orientation of the 0.94BNT-0.06BT ceramics prepared by the RTGG method was texture fraction${\approx}92%$ and the piezoelectric constant($d_{33}$) and coupling factor($k_{p}$) was obtained to $d_{33}{\approx}205{\;}pC/N$, $k_{p}{\approx}0.33%$, respectively.

Preparation of Textured Bi0.5(Na,K)0.5TiO3-BiFeO3 Solid Solutions by Reactive-Templated Grain Growth Process

  • Kato, Kyoko;Kimura, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.693-699
    • /
    • 2006
  • Textured $Bi_{0.5}(Na,K)_{0.5}TiO_3-BiFeO_3$ ceramics were prepared by the reactive-templated grain growth process, using platelike $Bi_4Ti_3O_{12}$ particles. The effects of chemical composition in $Bi_{0.5}(Na,K)_{0.5}TiO_3$ on texture development and densification were examined. Textured ceramics were obtained by using $Bi_{0.5}K_{0.5}TiO_3$ as an end member of the solid solution but densification was limited. Dense ceramics were obtained by using $Bi_{0.5}Na_{0.5}TiO_3$ but texture did not develop. Dense, textured ceramics were obtained by using $Bi_{0.5}(Na_{0.5}K_{0.5})_{0.5}TiO_3$.

A Brief Review of Some Challenging Issues in Textured Piezoceramics via Templated Grain Growth Method

  • Hye-Lim Yu;Nu-Ri Ko;Woo-Jin Choi;Temesgen Tadeyos Zate;Wook Jo
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • It is well known that polycrystalline ceramics fabricated via the templated grain growth method along a desired crystallographic direction, generally along [001], exhibits enhanced piezoelectric response. Generally, the piezoelectric properties of textured ceramics depend on the degree of texture, as piezoelectric properties peak in single crystals. Therefore, understanding the relationship between the degree of texture and piezoelectric properties is fundamental. Here, we present state-of-the-art textured piezoceramics by focusing on critical issues such as the quality of templates used for texturing and proper evaluation of the degree of texture analysis. The relationship between the degree of texture and its impact on the properties of textured materials is exclusively defined by the Lotgering factor (L.F.) calculated from the X-ray diffraction profiles. Additionally, we show that L.F. is not a suitable indicator of the degree of texture, contrary to previous interpretations. This statement was further supported by the fact that the true degree of texture can be better quantified by the multiples of random distribution. This argument was justified by comparing the quantitative values of the degree of texture obtained from both methods to those of the piezoelectric charge coefficient of textured and random ceramics.

Textured Ceramics for Multilayered Actuator Applications: Challenges, Trends, and Perspectives

  • Temesgen Tadeyos Zate;Nu-Ri Ko;Hye-Lim Yu;Woo-Jin Choi;Jeong-Woo Sun;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.214-225
    • /
    • 2023
  • Piezoelectric actuators, which utilize piezoelectric crystals or ceramics, are commonly used in precision positioning applications, offering high-speed response and precise control. However, the use of low-performance ceramics and expensive single crystals is limiting their versatile use in the actuator market, necessitating the development of both high-performance and cost-effective piezoelectric materials capable of delivering higher forces and displacements. The use of textured Pb (lead)-based piezoelectric ceramics formed by so-called templated grain growth method has been identified as a promising strategy to address the performance and cost issue. This review article provides insights into recent advances in texturing Pb-based piezoelectric ceramics for improved performance in actuation applications. We discussed the relevant issues in detail focusing on current challenges and emerging trends in the textured piezoelectric ceramics for their reliability and performance in actuator applications. We discussed in detail focusing on current challenges and emerging trends of textured piezoelectric ceramics for their reliability and performance in actuator applications. In conclusion, the article provides an outlook on the future direction of textured piezoelectric ceramics in actuator applications, highlighting the potential for further success in this field.

Guide for Processing of Textured Piezoelectric Ceramics Through the Template Grain Growth Method

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Hye-Lim Yu;Woo-Jin Choi;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.341-350
    • /
    • 2023
  • The templated grain growth (TGG) method has gained significant attention for its ability to produce highly textured piezoelectric ceramics with significantly enhanced performance, making it a promising method for transducer and actuator applications. However, the texturing process using the TGG method requires the optimization of multiple steps, which can be challenging for beginners in this field. Therefore, in this tutorial, we provide an overview of the TGG method mainly based on our previous published works, including its various processing steps such as synthesizing anisotropic-shaped templates with size and size distribution control using the molten salt synthesis technique, tape casting, and identifying key factors for proper alignment of the templates in the target matrix system. Our goal is to provide a resource that can serve as a basic reference for researchers and engineers looking to improve their understanding and utilization of the TGG method for producing textured piezoelectric ceramics.

Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs

  • Kim, Hwang-Pill;Ahn, Chang Won;Hwang, Younghun;Lee, Ho-Yong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Active search for lead-free piezoceramics over the last decade has harvested a considerable amount of achievements both in theory and in practice. Few would deny that those achievements are highly beneficial, but agree that this quest of developing the lead-free piezoceramics in replace for PZTs is successfully completed. Nevertheless, few would clearly state where this quest should be directed in our next move. A source of this uncertainty may originate from the fact that it is still not clear how good is good enough to beat PZTs. In this short review, we analyzed the existing literature data to clearly locate the current state of the art of lead-free piezoceramics in comparison to PZT-based piezoceramics. Four strategies of a potential importance were suggested and discussed to help researchers plan and design their future research on lead-free piezoceramics with a recently reported exemplary work.

Effect of Na2CO3 contents on synthesis of plate-like NaNbO3 particles for templated grain growth

  • Kim, Min-Soo;Lee, Sung-Chan;Kim, Sin-Woong;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung;Soh, Jin-Joong;Byun, Woo-Bong
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.270-273
    • /
    • 2012
  • x mol% (x = 0 ~ 20) Na2CO3 excess Bi2.5Na3.5Nb5O18 (BNN) particles were synthesized using molten salt as a flux. The secondary phases were observed at stoichiometric ratio of BNN precursors and their intensity decreased with increasing Na contents. The results of SEM images showed that all particles existed in a platelet shape and the particle increased in size with higher increasing Na contents. Plate-like NaNbO3 particles were developed using BNN precursor obtained by a topochemical microcrystal conversion. XRD analysis of NaNbO3 particles showed that a single perovskite phase and the intensity of (h00) peaks increased with increasing Na contents in BNN precursor. SEM images showed that the size of plate-like NaNbO3 was significantly changed by controlling Na contents in BNN precursors.