Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.2.12

Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs  

Kim, Hwang-Pill (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Ahn, Chang Won (Department of Physics, University of Ulsan)
Hwang, Younghun (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Lee, Ho-Yong (Department of Materials Science and Engineering, Sunmoon University)
Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Abstract
Active search for lead-free piezoceramics over the last decade has harvested a considerable amount of achievements both in theory and in practice. Few would deny that those achievements are highly beneficial, but agree that this quest of developing the lead-free piezoceramics in replace for PZTs is successfully completed. Nevertheless, few would clearly state where this quest should be directed in our next move. A source of this uncertainty may originate from the fact that it is still not clear how good is good enough to beat PZTs. In this short review, we analyzed the existing literature data to clearly locate the current state of the art of lead-free piezoceramics in comparison to PZT-based piezoceramics. Four strategies of a potential importance were suggested and discussed to help researchers plan and design their future research on lead-free piezoceramics with a recently reported exemplary work.
Keywords
Electrostrictions; Lead-free piezoceramics; Incipient piezoceramics; Reactive templated grain growth; Electromechanical strains;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Kling, X. Tan, W. Jo, H.-J. Kleebe, H. Fuess, and J. Rodel, "In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi- Based Lead Free Piezoceramics," J. Am. Ceram. Soc., 93 [9] 2452-55 (2010).   DOI
2 W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3$ - 6 mol% Ba$TiO_3$," J. Appl. Phys., 110 [7] 074106 (2011).   DOI
3 C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move On?," J. Materiomics, 2 [1] 1-24 (2016).   DOI
4 L. E. Cross, "Materials Science: Lead-Free at Last," Nature, 432 [7013] 24-25 (2004).   DOI
5 T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 113-26 (2007).   DOI
6 T. Takenaka, H. Nagata, and Y. Hiruma, "Current Developments and Prospective of Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 47 [5] 3787-801 (2008).   DOI
7 P. K. Panda, "Review: Environmental Friendly Lead-Free Piezoelectric Materials," J. Mater. Sci., 44 [19] 5049-62 (2009).   DOI
8 J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153- 77 (2009).   DOI
9 D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, "What Can Be Expected from Lead-Free Piezoelectric Materials?," Funct. Mater. Lett., 3 [1] 5-13 (2010).   DOI
10 R.-A. Eichel and H. Kungl, "Recent Developments and Future Perspectives of Lead-Free Ferroelectrics," Funct. Mater. Lett., 03 [01] 1-4 (2010).   DOI
11 E. Aksel and J. L. Jones, "Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators," Sensors (Basel), 10 [3] 1935-54 (2010).   DOI
12 I. Coondoo, N. Panwar, and A. Kholkin, "Lead-Free Piezoelectrics: Current Status and Perspectives," J. Adv. Dielectrics, 3 [02] 1330002 (2013).   DOI
13 H. F. Kay, "Electrostriction," Rep. Prog. Phys., 18 [1] 230- 50 (1955).   DOI
14 J. S. Kim, C. W. Ahn, D. S. Lee, I. W. Kim, J. S. Lee, B. M. Jin, and S. H. Bae, "An Advanced Ferroelectric Properties of the Mn Doped $Na_{0.5}Bi_{4.5}Ti_4O_{15}$ Ceramics Fabricated by Hot-Forging Method," Ferroelectrics, 332 [1] 45-9 (2006).   DOI
15 W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rodel, "Evolving Morphotropic Phase Boundary in Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ Piezoceramics,"J. Appl. Phys., 109 [1] 014110 (2011).   DOI
16 A. F. Devonshire, "Theory of Ferroelectrics," Adv. Phys., 3 [10] 85-130 (1954).   DOI
17 C. W. Ahn, C.-H. Hong, B.-Y. Choi, H.-P. Kim, H.-S. Han, Y. Hwang, W. Jo, K. Wang, J.-F. Li, J.-S. Lee, and I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68 [12] 1481-94 (2016).   DOI
18 G. Xu, Z. Duan, X. Wang, and D. Yang, "Growth and Some Electrical Properties of Lead-Free Piezoelectric Crystals $(Na_{1/2}Bi_{1/2})$TiO_3$ and $(Na_{1/2}Bi_{1/2})TiO_3-BaTiO_3$ Prepared by a Bridgman Method," J. Cryst. Growth, 275 [1-2] 113-19 (2005).   DOI
19 X. Yi, H. Chen, W. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, and J. Han, "Flux Growth and Characterization of Lead- Free Piezoelectric Single Crystal $[Bi_{0.5}(Na_{1-X}k_x)_{0.5}]TiO_3$," J. Cryst. Growth, 281 [2-4] 364-69 (2005).   DOI
20 Z. Yu, R. Guo, and A. Bhalla, "Dielectric Polarization and Strain Behavior of $Ba(Ti_{0.92} Zr_{0.08})O_3$ Single Crystals," Mater. Lett., 57 [2] 349-54 (2002).   DOI
21 H. D. Megaw, "Crystal Structure of Double Oxides of the Perovskite Type," Proc. Phys. Soc., 58 [2] 133-52 (1946).   DOI
22 Z. Yu, R. Guo, and A. S. Bhalla, "Orientation Dependence of the Ferroelectric and Piezoelectric Behavior of $Ba(Ti_{1-X}Zr_x) O_3$ Single Crystals," Appl. Phys. Lett., 77 [10] 1535-37 (2000).   DOI
23 Q. Zhang, Y. Zhang, F. Wang, Y. Wang, D. Lin, X. Zhao, H. Luo, W. Ge, and D. Viehland, "Enhanced Piezoelectric and Ferroelectric Properties in Mn-Doped $Na_{0.5}Bi_{0.5}TiO_3-BaTiO_3$ Single Crystals," Appl. Phys. Lett., 95 [10] 102904 (2009).   DOI
24 J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, and D. J. Green, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013).   DOI
25 J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015).   DOI
26 C. W. Ahn, G. Choi, I. W. Kim, J.-S. Lee, K. Wang, Y. Hwang, and W. Jo, "Forced Electrostriction by Constraining Polarization Switching Enhances the Electromechanical Strain Properties of Incipient Piezoceramics," NPG Asia Mater., 9 [1] e346 (2017).   DOI
27 B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp. 16-83, Academic Press, London, 1971.
28 S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997).   DOI
29 T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, and J. Rodel, "Temperature Dependence of the Piezoelectric Coefficient in BiMe$O_3-PbTiO_3$ (Me=Fe, Sc, ($Mg_{1/2}Ti_{1/2}$)) Ceramics," J. Am. Ceram. Soc., 95 [2] 711-15 (2012).   DOI
30 R. E. Cohen, "Origin of Ferroelectricity in Perovskite Oxides," Nature, 358 [6382] 136-38 (1992).   DOI
31 T. Takenaka, K. Sakata, and K. Toda, "Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric $Na_{0. 5}Bi_{4. 5}-Ti_4O_{15}$ Ceramic," Jpn. J. Appl. Phys., 24 [S2] 730 (1985).   DOI
32 C.-M. Wang, L. Zhao, J.-F. Wang, S. Zhang, and T. R. Shrout, "Enhanced Piezoelectric Properties of Sodium Bismuth Titanate ($Na_{0.5}Bi_{4.5}Ti_4O_{15}$) Ceramics with B-Site Cobalt Modification," Phys. Status Solidi, 3 [1] 7-9 (2009).
33 F. Li, L. Jin, Z. Xu, and S. Zhang, "Electrostrictive Effect in Ferroelectrics: An Alternative Approach to Improve Piezoelectricity," Appl. Phys. Rev., 1 [1] 011103 (2014).   DOI
34 S. Zhang, R. Xia, H. Hao, H. Liu, and T. R. Shrout, "Mitigation of Thermal and Fatigue Behavior in $K_{0.5}Na_{0.5}NbO_3$- Based Lead Free Piezoceramics," Appl. Phys. Lett., 92 [15] 152904-43 (2008).   DOI
35 S.-Y. Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J. H. Cho, B. I. Kim, and Y. Ikuhara, "Gigantic Electrostrain in Duplex Structured Alkaline Niobates," Chem. Mater., 24 [17] 3363-69 (2012).   DOI
36 R. Dittmer, W. Jo, E. Aulbach, T. Granzow, and J. Roodel, "Frequency-Dependence of Large-Signal Properties in Lead- Free Piezoceramics," J. Appl. Phys., 112 [1] 014101 (2012).   DOI
37 G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999).   DOI
38 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Piezoceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012).   DOI
39 H.-S. Han, W. Jo, J. Rodel, I.-K. Hong, W.-P. Tai, and J.-S. Lee, "Coexistence of Ergodicity and Nonergodicity in $LaFeO_3$- Modified $Bi_{1/2}(Na_{0.78}K_{0.22})_{1/2}TiO_3$ Relaxors," J. Phys.: Condens. Matter, 24 [36] 365901 (2012).   DOI
40 V.-Q. Nguyen, H.-S. Han, K.-J. Kim, D.-D. Dang, K.-K. Ahn, and J.-S. Lee, "Strain Enhancement in $Bi_{1/2}(Na_{0.82}K_{0.12})_{1/2}TiO_3$ Lead-Free Electromechanical Ceramics by Co-Doping with Li and Ta," J. Alloy. Compd., 511 [1] 237-41 (2012).   DOI
41 W. Bai, J. Hao, B. Shen, F. Fu, and J. Zhai, "Processing Optimization and Piezoelectric Properties of Textured Ba$(Zr,Ti)O_3$ Ceramics," J. Alloys Compd., 536 189-97 (2012).   DOI
42 R. E. Garcia, W. Craig Carter, and S. A. Langer, "The Effect of Texture and Microstructure on the Macroscopic Properties of Polycrystalline Piezoelectrics: Application to Barium Titanate and PZN-PT," J. Am. Ceram. Soc., 88 [3] 750-57 (2005).   DOI
43 D. Liu, Y. Yan, and H. Zhou, "Synthesis of Micron-Scale Platelet Ba$TiO_3$," J. Am. Ceram. Soc., 90 [4] 1323-26 (2007).   DOI
44 T. Sato, Y. Yoshida, and T. Kimura, "Preparation of <110>- Textured Ba$TiO_3$ Ceramics by the Reactive-Templated Grain Growth Method Using Needlelike $TiO_2$ Particles," J. Am. Ceram. Soc., 90 [9] 3005-8 (2007).   DOI
45 D. Vriami, D. Damjanovic, J. Vleugels, and O. Van der Biest, "Textured Ba$TiO_3$ by Templated Grain Growth and Electrophoretic Deposition," J. Mater. Sci., 50 [24] 7896- 907 (2015).   DOI
46 W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103 [25] 257602 (2009).   DOI
47 H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.- K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013).   DOI
48 M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do, and I. K. Jeong, "High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27 [43] 6976-82 (2015).   DOI
49 W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in $(K_{0.5}Na_{0.5})NbO_3$- Modified ($Bi_{0.5}Na_{0.5})TiO_{3^-}BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009).   DOI
50 Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, "Lead- Free High-Strain Single-Crystal Piezoelectrics in the Alkaline- Bismuth-Titanate Perovskite Family," Appl. Phys. Lett., 73 [25] 3683-85 (1998).   DOI
51 H. B. Lee, D. J. Heo, R. A. Malik, C. H. Yoon, H.-S. Han, and J. S. Lee, "Lead-Free $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Ceramcis Exhibiting Large Strain with Small Hysteresis," Ceram. Int., 39 [S1] S705-8 (2013).   DOI
52 C. Groh, W. Jo, and J. Rodel, "Frequency and Temperature Dependence of Actuating Performance of $Bi_{1/2}Na_{1/2}TiO_3- BaTiO_3$ Based Relaxor/Ferroelectric Composites," J. Appl. Phys., 115 [23] 234107 (2014).   DOI
53 D.-S. Lee, S. J. Jeong, M. S. Kim, and J. H. Koh, "Electric Field Induced Polarization and Strain of Bi-Based Ceramic Composites," J. Appl. Phys., 112 [12] 124109 (2012).   DOI
54 H. S. Han, I. K. Hong, Y.-M. Kong, J. S. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-Free $0.94(Bi_{1/2}Na_{1/2})TiO_3-0.06BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016).   DOI
55 M. Acosta, W. Jo, J. Rodel, and D. C. Lupascu, "Temperatureand Frequency-Dependent Properties of the $0.75Bi_{1/2}Na_{1/2}TiO_3-0.25SrTiO_3$ Lead-Free Incipient Piezoceramic," J. Am. Ceram. Soc., 97 [6] 1937-43 (2014).   DOI
56 D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$," Appl. Phys. Lett., 99 [6] 062906 (2011).   DOI
57 C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S.-J. Jeong, J.-S. Lee, and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24 [3] 356-62 (2013).   DOI
58 J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, ""Lead-Free" Piezoelectric $Ba(Ti_{0.94}Zr_{0.06})O_3$ single Crystals with Electromechanical Coupling Factor (K33) Higher Than 0.8," J. Korean Ceram. Soc., 51 [6] 623-28 (2014).   DOI
59 J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, "Dielectric and Piezoelectric Properties of "Lead-Free" Piezoelectric Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ Single Crystals," J. Korean Ceram. Soc., 53 [2] 171-77 (2016).   DOI
60 K.-S. Moon, D. Rout, H.-Y. Lee, and S.-J. L. Kang, "Solid State Growth of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals and Their Enhanced Piezoelectric Properties," J. Cryst. Growth, 317 [1] 28-31 (2011).   DOI
61 T. Tani, "Crystalline-Oriented Piezoelectric Bulk Ceramics with a Perovskite-Type Structure," J. Korean Phys. Soc., 32 [93] S1217-S20 (1998).
62 T. Kimura, T. Takahashi, T. Tani, and Y. Saito, "Crystallographic Texture Development in Bismuth Sodium Titanate Prepared by Reactive-Templated Grain Growth Method," J. Am. Ceram. Soc., 87 [8] 1424-29 (2004).   DOI
63 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004).   DOI
64 Y. Seno and T. Tani, "TEM Observation of a Reactive Template for Textured $Bi_{0.5}(Na_{0.87}K_{0.13})_{0.5}TiO_3$ Polycrystals," Ferroelectrics, 224 [1] 365-72 (1999).   DOI
65 C. M. Fancher, W. Jo, J. Rodel, J. E. Blendell, K. J. Bowman, and J. Ihlefeld, "Effect of Texture on Temperature- Dependent Properties of $K_{0.5}Na_{0.5}NbO_3$ Modified $Bi_{1/2}Na_{1/2}- TiO_{3-x}BaTiO_3$," J. Am. Ceram. Soc., 97 [8] 2557-63 (2014).   DOI
66 K. Chen, G. Xu, D. Yang, X. Wang, and J. Li, "Dielectric and Piezoelectric Properties of Lead-Free 0.95$(K_{0.5}Na_{0.5})NbO_3-0.05LiNbO_3$ Crystals Grown by the Bridgman Method," J. Appl. Phys., 101 [4] 044103 (2007).   DOI
67 Y. Hiruma, H. Nagata, and T. Takenaka, "Phase Diagrams and Electrical Properties of $(Bi_{1/2}Na_{1/2})TiO_3$-Based Solid Solutions," J. Appl. Phys., 104 [12] 124106 (2008).   DOI
68 H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber, and J. Rodel, "Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics," Adv. Electron. Mater., 1 [6] 1500018 (2015).   DOI
69 Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large Electrostrain near the Phase Transition Temperature of ($Bi_{0.5}Na_{0.5})TiO_3-SrTiO_3$ Ferroelectric Ceramics," Appl. Phys. Lett., 92 [26] 262904 (2008).   DOI
70 A. Hussain, C. W. Ahn, A. Ullah, J. S. Lee, and I. W. Kim, "Effects of Hafnium Substitution on Dielectric and Electromechanical Properties of Lead-Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}- (Ti_{1-x}Hf_x)O_3$ Ceramics," Jpn. J. Appl. Phys., 49 [4] 041504 (2010).   DOI
71 R. Zuo, C. Ye, X. Fang, and J. Li, "Tantalum Doped0.94$Bi_{0.5}Na_{0.5}TiO_3-0.06BaTiO_3$ Piezoelectric Ceramics," J. Eur. Ceram. Soc., 28 [4] 871-77 (2008).   DOI
72 Y. Hiruma, H. Nagata, and T. Takenaka, "Formation of Morphotropic Phase Boundary and Electrical Properties of $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Al_{1/2}Nb_{1/2})O_3$ Solid Solution Ceramics," Jpn. J. Appl. Phys., 48 [9] 09KC08 (2009).
73 Y. Hiruma, H. Nagata, and T. Takenaka, "Detection of Morphotropic Phase Boundary of $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Al_{1/2}- Sb_{1/2})O_3$ Solid-Solution Ceramics," Appl. Phys. Lett., 95 [5] 052903 (2009).   DOI
74 K. T. P. Seifert, W. Jo, and J. Rodel, "Temperature-Insensitive Large Strain of $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3-(K_{0.5}Na_{0.5})- NbO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 93 [5] 1392-96 (2010).
75 A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "Large Electric-Field-Induced Strain in Zr-Modified Lead- Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ Piezoelectric Ceramics," Sens. Actuators, A, 158 [1] 84-89 (2010).   DOI
76 H. Deng, X. Zhao, H. Zhang, C. Chen, X. Li, D. Lin, B. Ren, J. Jiao, and H. Luo, "Orientation Dependence of Electrical Properties of Large-Sized Sodium Potassium Niobate Lead- Free Single Crystals," Cryst. Eng. Commun., 16 [13] 2760 (2014).   DOI
77 W. Ge, H. Liu, X. Zhao, B. Fang, X. Li, F. Wang, D. Zhou, P. Yu, X. Pan, D. Lin, and H. Luo, "Crystal Growth and High Piezoelectric Performance of $0.95Na_{0.5}Bi_{0.5}TiO_3-0.05BaTiO_3$ Lead-Free Ferroelectric Materials," J. Phys. D: Appl. Phys., 41 [11] 115403 (2008).   DOI
78 R. Dittmer, W. Jo, J. Daniels, S. Schaab, and J. Rodel, "Relaxor Characteristics of Morphotropic Phase Boundary $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3$ Modified with $Bi(Zn_{1/2}Ti_{1/2})O_3$," J. Am. Ceram. Soc., 94 [12] 4283-90 (2011).   DOI
79 A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, H. J. Lee, and I. W. Kim, "Phase Transitions and Large Electric Field- Induced Strain in BiAl$O_3$-Modified $Bi_{0.5}(Na, K)_{0.5}TiO_3$ Lead- Free Piezoelectric Ceramics," Curr. Appl. Phys., 10 [4] 1174-81 (2010).   DOI
80 K.-N. Pham, A. Hussain, C. W. Ahn, W. Kim, S. J. Jeong, and J.-S. Lee, "Giant Strain in Nb-Doped $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ Lead-Free Electromechanical Ceramics," Mater. Lett., 64 [20] 2219-22 (2010).   DOI
81 W. Krauss, D. Schutz, M. Naderer, D. Orosel, and K. Reichmann, "BNT-Based Multilayer Device with Large and Temperature Independent Strain Made by a Water-Based Preparation Process," J. Eur. Ceram. Soc., 31 [9] 1857-60 (2011).   DOI
82 F. F. Wang, M. Xu, Y. X. Tang, T. Wang, W. Z. Shi, and C. M. Leung, "Large Strain Response in the Ternary $Bi_{0.5}Na_{0.5}- TiO_3-BaTiO_3-SrTiO_3$ Solid Solutions," J. Am. Ceram. Soc., 95 [6] 1955-59 (2012).   DOI
83 T. Takenaka, K.-I. Maruyama, and K. Sakata, "$(Bi_{1/2}Na_{1/2})TiO_3- BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 [9B] 2236-39 (1991).   DOI
84 S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5^-} TiO_{3^-}BaTiO_3-K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91 [11] 112906 (2007).   DOI
85 M. Deluca, "Microscopic Texture Characterisation in Piezoceramics," Adv. Appl. Ceram., 115 [2] 112-22 (2016).   DOI
86 J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, ""Lead-Free" Piezoelectric Ba$(Ti_{0.94}Zr_{0.06})O_3$ Single Crystals with Electromechanical Coupling Factor (K33) Higher Than 0.8," J. Korean Ceram. Soc., 51 [6] 623-28 (2014).   DOI
87 D. Lin, Z. Li, S. Zhang, Z. Xu, and X. Yao, "Influence of $MnO_2$ Doping on the Dielectric and Piezoelectric Properties and the Domain Structure in $(K_{0.5}Na_{0.5})NbO_3$ Single Crystals," J. Am. Ceram. Soc., 93 [4] 941-44 (2010).   DOI
88 J. L. Jones, B. J. Iverson, and K. J. Bowman, "Texture and Anisotropy of Polycrystalline Piezoelectrics," J. Am. Ceram. Soc., 90 [8] 2297-314 (2007).   DOI
89 S. Fushimi and T. Ikeda, "Phase Equilibrium in the System Pbo-$TiO_2-Zro_2$," J. Am. Ceram. Soc., 50 [3] 129-32 (1967).   DOI
90 T. Hatanaka and H. Hasegawa, "Dielectric Properties of $Pb(Zr_xti_{1-x})O_3$ Single Crystals Including Monoclinic Zirconia," Jpn. J. Appl. Phys., Part 1, 34 [9B] 5446-48 (1995).   DOI
91 K.-W. Kim, W. Jo, H.-R. Jin, N.-M. Hwang, and D.-Y. Kim, "Abnormal Grain Growth of Lead Zirconium Titanate (PZT) Ceramics Induced by the Penetration Twin," J. Am. Ceram. Soc., 89 [5] 1530-33 (2006).   DOI
92 J. Chen and R. Panda, "Review: Commercialization of Piezoelectric Single Crystals for Medical Imaging Applications"; pp. 235-240 in IEEE Ultrasonics Symposium. Rotterdam, Netherlands, 2005.
93 H. Fu and R. E. Cohen, "Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics," Nature, 403 281-83 (2000).   DOI
94 B. Noheda, J. A. Gonzalo, A. C. Caballero, C. Moure, D. E. Cox, and G. Shirane, "New Features of the Morphotropic Phase Boundary in the $Pb(Zr_{1-x}Ti_x)O_3$ System," Ferroelectrics, 237 [1] 237-44 (2000).   DOI
95 B. Noheda, J. A. Gonzalo, R. Guo, S.-E. Park, L. E. Cross, D. E. Cox, and G. Shirane, "The Monoclinic Phase in PZT: New Light on Morphotropic Phase Boundaries"; pp. 304- 13 in Fundamental Physics of Ferroelectrics 2000: Aspen Center for Physics Winter Workshop - Vol. 535 AIP Conference Proceedings. Aspen, Colorado, USA, 2000.
96 J. Frantti, Y. Fujioka, and R. M. Nieminen, "Evidence against the Polarization Rotation Model of Piezoelectric Perovskites at the Morphotropic Phase Boundary," J. Phys.: Condens. Matter, 20 [47] 472203 (2008).   DOI
97 A. A. Heitmann and G. A. Rossetti, "Thermodynamics of Polar Anisotropy in Morphotropic Ferroelectric Solid Solutions," Phil. Mag., 90 [1-4] 71-87 (2010).   DOI
98 E. Sun and W. Cao, "Relaxor-Based Ferroelectric Single Crystals: Growth, Domain Engineering, Characterization and Applications," Prog. Mater. Sci., 65 124-210 (2014).   DOI
99 W. Jo and J. Rodel, "Electric-Field-Induced Volume Change and Room Temperature Phase Stability of $(Bi_{1/2}Na_{1/2})TiO_{3-x}$ mol.% Ba$TiO_3$ Piezoceramics," Appl. Phys. Lett., 99 [4] 042901 (2011).   DOI
100 S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-Pb$TiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301 (2012).   DOI
101 J. E. Daniels, W. Jo, J. Rodel, V. Honkimaki, and J. L. Jones, "Electric-Field-Induced Phase-Change Behavior in ($Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3-(K_{0.5}Na_{0.5})NbO_3$: A Combinatorial Investigation," Acta Mater., 58 [6] 2103-11 (2010).   DOI
102 S.-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, and J. Rodel, "Lead-Free Piezoceramics with Giant Strain in the System $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3- K_{0.5}Na_{0.5}NbO_3$. I. Structure and Room Temperature Properties," J. Appl. Phys., 103 [3] 034107 (2008).   DOI
103 S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rodel, "Lead-Free Piezoceramics with Giant Strain in the System $Bi_{0.5}Na_{0.5}TiO_3-Ba$TiO_3-K_{0.5}Na_{0.5}NbO_3$. II. Temperature Dependent Properties," J. Appl. Phys., 103 [3] 034108 (2008).   DOI
104 S.-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel, and D. Damjanovic, "High-Strain Lead- Free Antiferroelectric Electrostrictors," Adv. Mater., 21 [46] 4716-20 (2009).   DOI
105 J. E. Daniels, W. Jo, J. Rodel, and J. L. Jones, "Electric- Field-Induced Phase Transformation at a Lead-Free Morphotropic Phase Boundary: Case Study in a 93%($Bi_{0.5}Na_{0.5})- TiO_3-7%BaTiO_3$ Piezoelectric Ceramics," Appl. Phys. Lett., 95 [3] 032904 (2009).   DOI
106 M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg, and H. Fuess, "Field-Induced Phase Transition in $Bi_{1/2}Na_{1/2}TiO_3$-Based Lead-Free Piezoelectric Ceramics," J. Appl. Cryst., 43 [6] 1314-21 (2010).   DOI