• 제목/요약/키워드: Tempering temperature

검색결과 168건 처리시간 0.023초

압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (I) (Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel)

  • 서창민;서민수;조해용
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.33-39
    • /
    • 2011
  • This study involved a series of experiments, which included impact tests (drop weight & Charpy) and hardness tests under various heat treatment conditions, followed by fractography observations of Normal Roll Shell steel (NRS), Abnormal Roll Shell steel (ARS), and S25C steel, in order to analyze the cause of brittle fracture and damages in Roll Shell steel. The optimal tempering temperature was characterized for ARS and NRS.

EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

  • Noh, Sanghoon;Choi, Byoung-Kwon;Han, Chang-Hee;Kang, Suk Hoon;Jang, Jinsung;Jeong, Yong-Hwan;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.821-826
    • /
    • 2013
  • In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구 (The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement)

  • 이승희;고태호;이원식;김승대
    • 열처리공학회지
    • /
    • 제35권6호
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.

기계학습을 활용한 공정 변수별 오스템퍼링 경도 예측 비교 연구 (Comparative Study of Aus-Tempering Hardness Prediction by Process Using Machine Learning)

  • 김경훈;박종구;허우로;양해웅
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.396-401
    • /
    • 2023
  • Aus-tempering heat treatment is suitable for thin and small-sized in precision parts. However, the heat treatment process relies on the experience and skill of the operator, making it challenging to produce precision parts due to the cold forging process. The aims of this study is to explore suitable machine learning models using data from the aus-tempering heat treatment process and analyze the factors that significantly impact the mechanic properties (e.g. hardness). As a result, the study analyzed, from a machine learning perspective, how hardness prediction varies based on the quenching temperature, carbon (C), and copper (Cu) contents.

440A 강의 공식부식에 미치는 첨가원소 및 열처리의 영향 (The Effect of Alloying Elements and Heat Treatment on the Pitting Corrosion of 440 A Martensitic Stainless Steels)

  • 김무길;정병호;이병찬
    • 열처리공학회지
    • /
    • 제22권2호
    • /
    • pp.67-74
    • /
    • 2009
  • 440A martensitic stainless steels which were modified with reduced carbon content (${\sim}$0.5%) and addition of small amount of nickel, vanadium, tungsten and molybdenum were manufactured. Effects of alloying elements and heat treatment on the pitting corrosion in 3.5% NaCl were investigated through the electrochemical polarization tests. The lowest pitting potential, $E_p$, was obtained when austenitizing temperature was $1250^{\circ}C$ and this is because of the grain coarsening. When austenitized at $1050^{\circ}C$ and tempered at $350{\sim}750^{\circ}C$, the highest $E_p$ was obtained at $350^{\circ}C$, while the lowest at $450^{\circ}C$ and $550^{\circ}C$ regardless of alloying elements added. But $E_p$ was increased a little at the tempering temperature of $450^{\circ}C$ and $550^{\circ}C$ when 0.4 wt.% of tungsten was added. More pitting was observed at $450{\sim}550^{\circ}C$, and pitting was formed at regions where Cr concentration is low or grain boundaries are intersecting and showed irregular shape.

분말고속도공구강의 미끄럼 마모특성에 미치는 열처리조건의 영향 (The Effects of Heat-treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy)

  • 이한영;배종수;김용진
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.405-411
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metaliurgy(PM-HSS) had been eluminated in auther's previous paper. In addition, it is generally known that the wear properties of materials have been influenced by heat-treating conditions as well. Therefore, a study has been done to clarify the effects of heat-treating conditions on wear properties of PM-HSS. The wear tests have been performed under the same conditions as the previous paper using heat-treated PM-HSS(5%Co-1%Nb) with different quenching and tempering temperatures. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However, tempering temperature is not sensitive to the wear resistance in the range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms due to not only the quenching aging but also dispersion-hardening is improved.

  • PDF

금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel)

  • 김제돈;김경식
    • 열처리공학회지
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

냉간금형강의 미세조직과 기계적 특성: STD11과 8%Cr 강의 비교 (Microstructures and Mechanical Properties of Cold-Work Tool Steels: A Comparison of 8%Cr Steel with STD11)

  • 김호영;강전연;손동민;이대수;이태호;정우창;조경목
    • 열처리공학회지
    • /
    • 제27권5호
    • /
    • pp.242-252
    • /
    • 2014
  • A comparative study was performed on the microstructures and the mechanical properties of STD11 and 8Cr steel. The specimens were quenched from $1030^{\circ}C$ and tempered at $240^{\circ}C$ and $520^{\circ}C$. Vickers hardness, impact toughness and tensile tests were conducted at various tempering temperatures. Microstructural characterization to measure grain size, volume fraction of retained austenite and distribution of carbides was carried out by using SEM, EBSD, TEM and X-ray diffraction techniques. Due to finer $M_7C_3$ carbides dispersed, 8Cr steel showed larger impact toughness and plasticity than STD11 irrespective of the tempering temperature. While 8Cr steel had lower hardness in as-quenched state and after tempering at $240^{\circ}C$ owing to smaller carbide content and more retained austenite, it was harder after tempering at $520^{\circ}C$ due to larger precipitation hardening from finer $M_{23}C_6$.

파쇄기용 코일스프링의 파손에 관한 연구 (A study on the Fracture of Coil Spring)

  • 정형식;안세원;이종형;최성대
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2006
  • The study is diagnosis about fatigue failure phenomenon of heating coil spring (sup9) and heat treatment method that is used to crusher. Because more than 80~90% of damage announcement of breakdown of machine and construction is been caused in fatigue present state, fatigue failure became important leading person at design. Calculated design load is imposed repeatedly that fatigue breakdown is safe. Is phenomenon that change load is imposed in the construction continuously. Used coil spring applies heat 30minute by Quenching temperature $860^{\circ}C$ if see manufacturing process and temperature of gasoline of $50^{\circ}C$ keep after quench that know tempering a $460^{\circ}C$ 90minute a product be. If doto apply heat $950^{\circ}C$ material at rolling process historically before quenching, austenite formation clay pipe being done AGS(Austenite Grain Size) by 2.5~4 become. Apply heat quenching 30minute by $820^{\circ}C$ by improvement method and after quench that keep $50^{\circ}C$ in oil tempering if do $450^{\circ}C$, 90minute spring ideal formation sorbite formation of the river form and condition that satisfy most more than AGS 7 appeared. Also, we can secure authoritativeness through MT since shot peening processing.

  • PDF

다구찌 직교배열 실험을 이용한 무한궤도용 트랙 슈의 충격인성 향상 연구 (Impact toughness improvement of an undercarriage track shoe using the Taguchi orthogonal array experiment)

  • 김영석;장근성
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1611-1619
    • /
    • 2015
  • 트랙 슈는 건설 중장비의 무한궤도에 사용되는 중요한 핵심 부품으로 열악한 환경에서 사용되기 때문에 충분한 강도와 충격인성이 확보되어야 한다. 본 연구에서는 보론 첨가강으로 만들어지는 트랙 슈의 경화능을 죠미니 H-밴드법을 통해 먼저 확인한 후, 충격인성 개선을 목표로 다구찌의 직교배열실험법을 사용하여 트랙 슈의 제조공정을 최적화하여 트랙 슈의 충격인성 향상을 꾀하고자 하였다. 공정변수로는 트랙 슈의 제조과정에 있는 블룸소재별 압하비, 뜨임 온도, 뜨임 유지시간을 택하였으며, 직교배열 실험을 수행하여 이들 변수가 샤르피 충격실험으로 평가한 충격인성에 미치는 영향을 평가였다. 그 결과, 트랙 슈의 충격인성은 압하비가 높은 쪽이 유리하고, 뜨임 온도는 $210^{\circ}C$, 뜨임 유지 시간은 80분이 유리하다는 것을 알 수 있다.