• Title/Summary/Keyword: Temperature-rise time

Search Result 432, Processing Time 0.032 seconds

A Study on the Classification of Domestic Fire Detector using Response Time Index (반응시간지수(Response Time Index)를 이용한 국내 화재감지기 등급분류에 관한 연구)

  • Hong, Sung Ho;Kim, Dong Suck;Choi, Ki Ok
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.46-51
    • /
    • 2017
  • This paper presents classification of domestic fire detector using response time index. Response time is measured using fire detector distributed in Korea, and the response time index is estimated. Plunge test prescribed by FM is conducted to measure response time of fire detector. The detector used to test is fixed temperature type(thermistor and bimetal type) and rate of rise temperature type(thermistor and pneumatic type). The nominal operation temperature of fixed temperature type detector is $70^{\circ}C$ and rate of rise temperature is $15^{\circ}C/min$. The fixed temperature type is measured 7 products, and the rate of rise temperature type is measured 5 products. The results show that in case of fixed temperature type(thermistor) is classified "Quick" or "Standard" and fixed temperature type(bimetal) is not classified. The rate of rise temperature type(thermistor) is classified "Fast" or "Ultra Fast" and the rate of rise temperature type(pneumatic) is classified "Very Fast" or "Ultra Fast". The pneumatic type shows more fast response than thermistor type. Also these results indicate the fixed temperature type(bimetal) is not suitable for early stage fire detection.

Analysis and Measurement of Rough Surface Temperature Rise in Lubricated Condition (거친 표면의 마찰온도 해석 및 온도측정 실험에 관한 연구)

  • Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.56-60
    • /
    • 2007
  • The main object of this study is to compare the results that have been concluded by the experiment and to estimate the temperature rise that can cause the contacting surface to be damaged. The former studies are based on the Blok and Jaeger formula. By these formulas we assume that two of the contacted objects are a kind of semi-infinite solid and with this assumption we can make a temperature analysis. But this method doesn't consider lubrication conditions and the calculation time requires a lot of time in that we have to face many difficulties in measuring the actual temperature rise. In this study we combines the semi-infinite solid method and the finite volume method to analyze the temperature of the contacting surface. And we measure temperature rise of the contact surface by dynamic thermocouple.

Prediction of Adiabatic Temperature in Concrete as Semiadiabatic Temperature (간이단열온도로서 콘크리트의 단열온도 추정을 위한 연구)

  • Moon, Han-Young;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.121-129
    • /
    • 2001
  • The semi-adiabatic temperature rise and the losses of temperature of cement paste, mortar and concrete were measured by an apparatus of semi-adiabatic temperature. Heat of hydration was measured by a conduction calorimeter and adiabatic temperature rise of concrete was measured by an adiabatic calorimeter. The derived equation which can assume the adiabatic temperature was proposed by measuring the semi-adiabatic temperature of concrete. The maximum adiabatic temperature rise of concrete obtained by the derived equation of adiabatic temperature, $T_{ad}(t)=T_{sad}(t)+T_{dis}(t)$, showed $55^{\circ}C$ approximately and it had good relation with the other one obtained by the heat of hydration of cement paste and with maximum value which was measured by the adiabatic calorimeter. The adiabatic temperature rise obtained by derived equation was a different information in comparison with the value obtained by adiabatic temperature rise equations by Hell and et. al. in early age, but it showed similar tendencies with the other one according to elapsed time. Adiabatic temperature rise of lich mix concrete with highly cement content was predicted. The adiabatic temperature rise of cement paste and mortar obtained by derived equation from us showed comparatively matching results to compared with that of obtained by adiabatic temperature equation from concrete standard specification.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Operating Temperature and Time of Rate of Rise Heat Detector (차동식 열감지기의 작동온도와 작동시간)

  • 류호철;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 1994
  • Rate of rise heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, simple equations were derived which can be predicted the response time and temperature of the rate of rise heat detector with the results of hot wind tunnel tests and compartment fire experiments.

  • PDF

Lifetime-Temperature Rise Model for the Evaluation of Degradation in Electric Connections/Contacts (전기적 접속/접촉부 열화 평가를 위한 수명 온도상승 모델)

  • Kim, Jeong-Tae;Kim, Nam-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.55-61
    • /
    • 2002
  • In this paper, 'lifetime-temperature rise model' based on the 'lifetime-resistance model' is theoretically Proposed, in order to find out the evaluation method of degradation and the residual lifetime by use of infrared image camera for electric connections/contacts. Two assumptions have been builded up for the 'lifetime-temperature rise model': one is associated with the linear relationship between the temperature ism ΔK and contact resistance, and the other the functional relationship between the temperature of electric connections/contacts and the operating time presenting in the 'lifetime-resistance model'. To prove the proposed model, experiments have been performed for various electric connections/contacts. From the experimental results, measured values were quite similar to the calculated values, which proved the above-mentioned two assumptions. Therefore, by use of 'lifetime-temperature rise model', it is possible to estimate the trend of degradation and the residual lifetime for electric connections/contacts through the temperature measurements .

Lifetime Temperature Rise Model for the Degradation of Electric Connections/Contacts (도체접속부 열화에 대한 수명온도상승 모델)

  • Kim, Jeong-Tae;Kim, Ji-Hong;Koo, Ja-Yoon;Yoon, Ji-Ho;Ham, Gil-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1611-1613
    • /
    • 2000
  • In this study in order to find out the trends and the residual lifetime for electric connections/contacts using infrared image camera, "lifetime temperature rise model" is theoretically proposed on the base of "lifetime resistance model" and to prove this theory, experiments have been performed for various kinds of electric connections/contacts. Two suggestions have been builded up or the "lifetime temperature rise model" ; one is the linear relationship between the temperature rise $\Delta K$ and contact resistance, and the other is the functional relationship between the temperature of electric connections/contacts and the operating time which ascribed in the "lifetime resistance model". From the experimental results, measured values were quite similar to the theoretical value so that two suggestions in "lifetime temperature rise model" were appeared to be correct.

  • PDF

A study on reducing temperature rise of twin-glass evacuated tube solar collector during summer time (이중진공관형 태양열 집열기의 하절기 과열 방지에 대한 연구)

  • Bai, Sang-Eun;Bai, Cheol-Ho;Nam, Hyun-Kyu;Shin, Ki-Yeol;Yoo, In-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.36-41
    • /
    • 2013
  • The reflection plate in twin-glass evacuated tube solar collector is controlled to reduce the overheat during the summer time. The sliding type and folding types are suggested and tested. The sliding type changes the plate angle and the folding type changes the opening angle of the reflection plate. By scattering the focus of the reflected radiation from the reflection plate, the temperature rise of the working fluid can be reduced. The sliding type shows the best results in overheat reduction. When solar radiation is 900 $W/m^2$, the temperature rise in one sliding type collector is reduced about $2^{\circ}C$ compared to that of the normal solar collector. When this method is applied to seven series-collectors in the field, the reduction of temperature rise during the summer time should be significant.

A Study on Inversion at Leeward Side of High-rise Building in Winter (동절기 고층건물 풍하면의 기온역전에 관한 연구)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Oh, Sung-Nam;Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.583-590
    • /
    • 2010
  • To determine nocturnal inversion characteristics at the leeward side of high-rise building, air temperature data were observed at 10 minute interval from February 22, 2010 to April 15, 2010. The observed data were compared, analyzed and examined to illustrate air temperature differences between the roof (XAR) and surface (XAG) of X apartment. The wind speed, wind direction and precipitation data were also observed at XAR and YJL (Yangjae Stream) sites at the same time. After the analysis, the maximum nocturnal inversion was observed by $4.0^{\circ}C$ at 3:40, 3:50, 4:10 on February 24th 2010, at that time the weather condition was clear and weak wind. Air temperature inversions at the leeward side of high-rise building were observed on whole day in wintertime and air temperature inversion intensity was also higher than other nearby area (SMG).