• 제목/요약/키워드: Temperature-Humidity Index

검색결과 290건 처리시간 0.025초

Effects of heat stress on performance, physiological parameters, and blood profiles of early-fattening Hanwoo steers in climate chambers

  • Jun Sik Woo;Na Kyun Lee;Hong Gu Lee;Keun Kyu Park
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.142-150
    • /
    • 2024
  • Objective: This study was conducted to assess effects of heat stress on growth performance, physiological parameters, and blood profiles of Hanwoo steers during early-fattening period in climate chambers. Methods: Four Hanwoo steers (body weight, 454.3±10.9 kg; age, 14±0.1 month) were allocated into four levels of temperature-humidity index (THI) in a 4×4 Latin square design for 21 days (pre-adaptation, 7 d; heat stress, 7 d; post-adaptation, 7 d) per period. Experimental treatments were assigned according to THI chart based on National Institute Animal Science (NIAS, 2022): Comfort (25.5℃ to 26.5℃, 60%; THI 73 to 75), Mild (28℃ to 29℃, 60%; THI 77 to 79), Moderate (29.5℃ to 30.5℃, 80%; THI 82 to 84), and Severe (31℃ to 32℃, 80%; THI 85 to 86) in separate climatic controlled chambers. Results: The dry matter intake (DMI) of the formula feed was lower in Severe compared to Mild and Comfort (p<0.05). The DMI of rice straw was the lowest in Severe and lower in Moderate than Comfort and Mild (p<0.05). Both average daily gain and feed conversion ratio of Severe and Moderate were lower than those of Mild and Comfort (p<0.05). Water intake was the highest in Severe and lower in Moderate compared with Comfort and Mild (p<0.05). Heart rate and rectal temperature increased as THI level increased (p<0.05). Glucose was the lowest in Severe and lower in Moderate compared to Comfort (p<0.05). On the contrary, non-esterified fatty acid was the highest in Severe and lower in Moderate compared with Comfort (p<0.05). Blood urea nitrogen of Moderate and Severe were higher than those of Comfort and Mild (p<0.05). Cortisol increased as THI increased (p<0.05). Conclusion: This study demonstrated the negative effects of heat stress on the performance and physiological responses of Hanwoo steers during the early-fattening period. In addition, it is judged that the THI chart for Hanwoo steers of National Institute of Animal Science (2022) was properly calculated.

쾌적 지수 기반의 실내 상황 모니터링 서비스 연구 (A Study of Indoor Context Monitoring Service Based on Comfort Index)

  • 진남;김도현
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.113-118
    • /
    • 2014
  • 최근 실내 환경에서 온도, 습도 등과 같은 현상 데이터를 수집하여 제공하는 실내 상황 정보에 대한 연구가 진행되고 있다. 특히 빌딩에서 불쾌한 상황이 증가하고, 환경 변화에 대한 인식 요구가 증가하고 있다. 본 논문에서는 현상 데이터를 대신하여 실시간 실내 쾌적 상황 정보를 제공하기 위해 GIS 기반의 실내 쾌적 지수 및 상황 산출 엔진을 설계하고 구현한다. 이를 통해 자신의 실내 쾌적 상황을 자가 진단하고, 이를 사용자에게 알려주어 실내 환경을 관리할 수 있다.

생체 환경 정보 센싱 모듈 및 농장 제어 게이트웨이를 이용한 스마트 낙농 관리 시스템 개발 (Smart Dairy Management System Development Using Biometric/Environmental Sensors and Farm Control Gateway)

  • 박용주;문준
    • 대한임베디드공학회논문지
    • /
    • 제11권1호
    • /
    • pp.15-20
    • /
    • 2016
  • Recently, the u-IT applications for plants and livestock become larger and control of livestock farm environment has been used important in the field of industry. We implemented wireless sensor networks and farm environment automatic control system for applying to the breeding barn environment by calculating the THI index. First, we gathered environmental information like livestock object temperature, heart rate and momentum. And we also collected the farm environment data including temperature, humidity and illuminance for calculating the THI index. Then we provide accurate control action roof open and electric fan in of intelligent farm to keep the best state automatically by using collected data. We believed this technology can improve industrial competitiveness through the u-IT based smart integrated management system introduction for industry aversion and dairy industries labor shortages due to hard work and old ageing.

Estimating milk production losses by heat stress and its impacts on greenhouse gas emissions in Korean dairy farms

  • Geun-woo, Park;Mohammad, Ataallahi;Seon Yong, Ham;Se Jong, Oh;Ki-Youn, Kim;Kyu-Hyun, Park
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.770-781
    • /
    • 2022
  • Meteorological disasters caused by climate change like heat, cold waves, and unusually long rainy seasons affect the milk productivity of cows. Studies have been conducted on how milk productivity and milk compositions change due to heat stress (HS). However, the estimation of losses in milk production due to HS and hereby environmental impacts of greenhouse gas (GHG) emissions are yet to be evaluated in Korean dairy farms. Dairy milk production and milk compositions data from March to October 2018, provided by the Korea Dairy Committee (KDC), were used to compare regional milk production with the temperature-humidity index (THI). Raw data for the daily temperature and relative humidity in 2018 were obtained from the Korea Meteorological Administration (KMA). This data was used to calculate the THI and the difference between the maximum and minimum temperature changing rate, as the average daily temperature range, to show the extent to which the temperature gap can affect milk productivity. The amount of milk was calculated based on the price of 926 won/kg from KDC. The results showed that the average milk production rate was the highest within the THI range 60-73 in three regions in May: Chulwon (northern region), Hwasung (central region), and Gunwi (southern region). The average milk production decreased by 4.96 ± 1.48% in northern region, 7.12 ± 2.36% in central region, and 7.94 ± 2.57% in southern region from June to August, which had a THI range of 73 or more, when compared to May. Based on the results, the level of THI should be maintained like May. If so, the farmers can earn a profit of 9,128,730 won/farm in northern region, 9,967,880 won/farm in central region, and 12,245,300 won/farm in southern region. Additionally, the average number of cows raised can be reduced by 2.41 ± 0.35 heads/farm, thereby reducing GHG emissions by 29.61 ± 4.36 kg CO2eq/day on average. Overall, the conclusion suggests that maintaining environmental conditions in the summer that are similar to those in May is necessary. This knowledge can be used for basic research to persuade farmers to change farm facilities to increase the economic benefits and improve animal welfare.

경주 남산 소나무림의 가을철 해발고도별 음이온 발생지수 (Negative Ion Generation Index according to Altitude in the Autumn of Pine Forest in Gyeongju Namsan)

  • 김정호;윤지훈;이상훈;최원준;윤용한
    • 한국환경생태학회지
    • /
    • 제32권4호
    • /
    • pp.413-424
    • /
    • 2018
  • 본 연구에서는 경주 남산을 대상으로 지형구조 및 해발고도가 음이온 발생량에 미치는 영향을 분석하였다. 분석결과, 기온은 능선부($9.82^{\circ}C$) > 계곡부($8.44^{\circ}C$), 상대습도는 계곡부(59.01%) > 능선부(58.64%), 풍속은 능선부(0.63m/s) > 계곡부(0.37m/s), 일사량은 능선부($34.40W/m^2$) > 계곡부($14.69W/m^2$)로 나타났다. 음이온의 경우 계곡부($636.81ea/cm^3$) > 능선부($580.04ea/cm^3$)로 계곡부가 더 높은 음이온 발생량을 보였다. 해발고도와의 상관성 분석 결과, 계곡부에서는 기온, 상대습도, 일사량, 음이온 발생량과의 상관성이 검증되었으며, 상대습도, 일사량, 음이온 발생량과는 정의 상관관계, 기온과 부의 상관관계가 나타났다. 능선부에서는 기온, 상대습도, 풍속, 일사량, 음이온 발생량과의 상관성이 검증되었으며, 상대습도, 일사량, 음이온 발생량과는 정의 상관관계, 기온, 풍속과는 부의 상관관계가 나타났다. 회귀분석 결과, 기온의 경우 계곡부는 y= -0.006x+9.663 (x=해발고도, y=기온), 능선부의 경우 y= -0.009x+11.595(x=해발고도, y=기온)의 예측식을 얻었다. 상대습도의 경우 계곡부는 y= 0.027x+53.561 (x=해발고도, y=상대습도), 능선부의 경우 y= 0.008x+56.646 (x=해발고도, y=상대습도)의 예측식을 얻었다. 음이온 발생량의 경우 계곡부는 y= 0.577x+521.508 (x=해발고도, y=음이온 발생량), 능선부의 경우 y= 0.605x+549.068 (x=해발고도, y=음이온 발생량)의 예측식을 얻었다.

Predicting Atmospheric Concentrations of Benzene in the Southeast of Tehran using Artificial Neural Network

  • Asadollahfardi, Gholamreza;Mehdinejad, Mahdi;Mirmohammadi, Mohsen;Asadollahfardi, Rashin
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.12-21
    • /
    • 2015
  • Air pollution is a challenging issue in some of the large cities in developing countries. In this regard, data interpretation is one of the most important parts of air quality management. Several methods exist to analyze air quality; among these, we applied the Multilayer Perceptron (MLP) and Radial Basis Function (RBF) methods to predict the hourly air concentration of benzene in 14 districts in the municipality of Tehran. Input data were hourly temperature, wind speed and relative humidity. Both methods determined reliable results. However, the RBF neural network performance was much closer to observed benzene data than the MLP neural network. The correlation determination resulted in 0.868 for MLP and 0.907 for RBF, while the Index of Agreement (IA) was 0.889 for MLP and 0.937 for RBF. The sensitivity analysis related to the MLP neural network indicated that the temperature had the greatest effect on prediction of benzene in comparison with the wind speed and humidity in the study area. The temperature was the most significant factor in benzene production because benzene is a volatile liquid.

고온 환경이 젖소의 생산성 및 축사환경에 미치는 영향 연구 (A Study on the Effects of Heat Stress on Feedlot Environment and Productivity of Dairy Cattle)

  • 김별;임정수;조성백;황옥화;양승학
    • 한국축산시설환경학회지
    • /
    • 제20권2호
    • /
    • pp.63-68
    • /
    • 2014
  • Environmental heat stress by global warming has a severe effect on the productivity of livestock and, in particular, on that of dairy cattle. Heat stress during high temperature environment directly and indirectly affects milk yield, milk quality and physiological response. This study was conducted to investigate the effects of heat stress on productivity and physiological responses of livestock. Temperature-humidity data logger were established inside the feedlot for measuring real time changes in the feedlot environment. Milk was collected every day for analysing the productivity of dairy cattle. Blood sample and respiration of dairy cattle were collected once in a week for investigating the physiological response factors. Blood component concentration associated with lipolysis metabolism and milk production showed change during tropical night period. Temperature humidity index (THI) of a specific location inside the feedlot showed continuously high levels.

온도, 습도, 기류를 이용한 하절기 VRF 시스템의 쾌적 제어 알고리즘 개발 (Development of Comfort Control Logic for VRF System in Summer Season by using 3 Environment Factors(Temperature, Humidity and Air flow))

  • 김종민;최재붕;이상원;조두호;이필호;김영진
    • 설비공학논문집
    • /
    • 제23권9호
    • /
    • pp.610-619
    • /
    • 2011
  • This paper investigates the simplified comfort index and control logic for VRF (Variable Refrigerant Flow) system by using 3 environmental factors such as temperature, humidity and air flow. Indoor test under thermal load was conducted to explore relationship of each environment factors that is related to simplified comfort index. Simplified comfort function that has 3 environmental variables was proposed based on survey results. Each factor is measured and comfort preference was surveyed by more than 30 subjects in the indoor comfort test. Moreover, control logic for VRF system was developed and then simulated by using thermal load calculation method and verified with test. The proposed comfort function was in good agreement with survey results, and also verification test trend of comfort change and maintenance are quite similar with survey. Furthermore, through the additional test data analysis some differences of comfort according to position of people staying in the test room were additionally investigated by air flow. People being under an exit of air in the indoor air-conditioner feel more comfortable condition and speed of response to comfort change is relatively fast.

강제 환기식 육계사 내부 열환경 균일성 평가 (Internal Thermal Environment Uniformity Analysis of Mechanically Ventilated Broiler House)

  • 김다인;이인복;이상연;박세준;김준규;조정화;정효혁;강솔뫼;정득영
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.65-75
    • /
    • 2022
  • Livestock industry in Korea has been growing rapidly and has reached 23 trillion Korean won in 2021. This study focuses on broiler, which is one of the largest sectors in livestock industry. As the effects of climate change get more serious, primary industry such as livestock industry is fragile to climate change since it directly interacts with nature. Therefore, maintaining suitable rearing environment is important. One of the most frequently used ventilation type for controlling the rearing environment of broiler house, tunnel ventilation, causes frequent air velocity fluctuation which makes maintaining the rearing environment important. By measuring the air temperature, relative humidity and air velocity in various points inside the broiler house, the internal thermal environment uniformity was analyzed according to length, width and zone. The experimental house was found to have dead zone with high air temperature, relative humidity and low air velocity near the end of the inlet and at the end of the broiler house. By using heat stress index to analyze quantitatively, zone with highest heat stress index was found to increase by 7.55% compared to the lowest zone. As a result, to maintain uniform rearing environment inside the broiler house, different factors must be measured and analyzed and used to operate the environmental control facilities.

PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션 (An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index)

  • 성남철;윤동원
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.19-25
    • /
    • 2010
  • 최근 에너지 절약을 화두로 건물에서의 에너지 절약기술들이 크게 요구되어 지는 반면 재실자의 온열쾌적환경은 비교적 비중 있게 다루어지지 않고 있다. 실내공간의 쾌적성은 재실자의 만족감과 더불어 생산성을 향상시키는 등의 역할을 하며, 최근 삶의 질 향상 등에 따라 그 필요성이 크게 요구되고 있는 실정이다. 따라서 본 연구에서는 공동주택을 대상으로 겨울철 난방 시 쾌적지표를 통한 실내 온열환경 제어의 타당성을 검토하고자 시뮬레이션을 수행하였으며, 주거건물에서의 일상적인 실내온도와 에너지 절약 설계기준에서 제시한 실내 설정온도, 그리고 쾌적지표를 설정으로 한 각 제어조건의 온열환경과 에너지 소비량을 비교 분석 및 검토하였다. 본 연구결과에 따르면, 쾌적지표인 PMV로 실내환경을 제어했을 때 에너지 절약설계 기준인 $22^{\circ}C$로 실내온도를 설정하였을 때보다 에너지 소비량은 29% 증가하지만 주거용 건물에서 일반적으로 유지되는 실내온도인 $24^{\circ}C$ 보다는 에너지소비량은 11% 정도 감소하며, 온열쾌적감도 각 제어조건 중 가장 우수하게 나타났다. 따라서 여러 가지 제어변수들을 통한 연구가 지속된다면 주거용 건물에서도 쾌적지표를 활용한 실내 공간의 제어방법은 건물의 에너지를 절약하고 실내 환경의 쾌적성을 증대시키는 주요기술이 될 수 있을 것으로 기대된다.