• Title/Summary/Keyword: Temperature window

Search Result 431, Processing Time 0.038 seconds

A Study on the Condensation Performance of Curtain-wall Window in High-Rise Residential Building (초고층 주거건물 커튼월의 창호부 결로 성능평가에 관한 연구)

  • Seok Ho-Tae;Chung Man-Seok;Kwak Hyun-Chul;Kwon Jong-Wook
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.81-89
    • /
    • 2005
  • The purpose of this thesis is thermal performance simulation about various type that can apply in the high-rise residential building to estimate condensation performance of window that is consisted of frame and glazing in curtain wall. The result of this thesis are summarized as follows. First, condensation occurrence point when relative humidity is $30{\cdot}40{\cdot}50\%$ is shortest Low-e double glass. Difference by type of gas and spacer was a little by $2{\~}6$ cm, among it, the case that apply krypton in gas and the case that apply double seal in spacer were less condensation occurrence distribution. Second, when analyzed improved proposal of window and existing plan through simulation, improved proposal is superior from general side of the interior and exterior temperature, thermal break surrounding temperature and temperature of frame end, condensation occurrence point etc. Therefore, if it was used improved proposal with effect that improve in curtain wall of high-rise residential building, it may improve window condensation performance of curtain wall.

Effects of Austenitization and Sn Addition on Processing Window of Austempered Cast-iron (오스템퍼드 구상흑연주철의 Processing Window에 미치는 오스테나이징 조건 및 주석의 영향)

  • Kwon, M.Y.;Baek, S.H.;Yoon, D.K.;Kim, M.J.;Kim, D.J.;Kwon, H.W.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.22-26
    • /
    • 2021
  • The present study demonstrated the effects of processing variable and alloying elements on the processing window of austempered cast iron, one of the heat-treatable cast irons, in order to elucidate the relation between heat treatment and microstructure in terms of time and temperature. Such microstructure is strongly affected by austenitizing conditions and alloying elements. The size of processing window tends to increase initially with increasing austenitizing temperature from 1123 to 1173 K, followed by a decline in the reverse direction between 1173 and 1223 K. Thus, the optimized processing window with large frame was found at an austenitizing temperature of 1173 K. To determine the effect of Sn addition, the processing window in the sample was created by the addition of 0.08 wt.% Sn, which appeared larger than that without Sn and with 0.06 wt.% Sn.

A Fundamental Study for the Automatic Control System in Greenhouse Using Microcomputer(III) -A variation of temperature and humidity by the window opening ways of the even-Span type house- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 기초연구(III) -양지붕형 하우스의 창 개방방법에 따른 온.습도의 변화-)

  • 김진현;김철수;구건효;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.162-172
    • /
    • 1995
  • The ventilation in greenhouse have been important for such as adjustment of temperature, supplying of the oxygen, prevention of the overhumidity, density adjustment of $CO_2$, discharge of harmfulness gas, etc. However, the general ventilation which had been used the quantitative control method in discharge of a property of air mechanism in greenhouse, and caused mainly in waste of the heating energy and growth obstacle of the vegetable. Therefore, this study was peformed to obtain more scientific ventilation method using by analysis and measurement of the isothermal lines according to opening of window ventilation in greenhouse, and the results are summarized as follows. 1. The ventilating amount was more influenced by rather opening amount of window than the ventilating time. 2. In window ventilation, the temperature in greenhouse was mostly changed within 5 minutes after ventilating not regard to the spot of opening, after about 10 minutes temperature became to equilibrium state under the respective ventilating conditions. 3. In opening of the skylight only, isothermal lines were complicated, therefore, a tall vegetable may be possible to damage by a cold-weather from the lower central port in greenhouse. 4. Isothermal lines were a tendency to simply in opening of a side window that may be more effective ventilation in kinds of the short vegetable. 5. In conditions of internal temperature>setting temperature>external temperature, a skylight can be suitable to open 10~20cm in order to the optimum ventilation in greenhouse. 6. In conditions of internal temperature>external temperature>setting temperature, opening of all the windows or both the side windows that can be suitable in order to obtain the optimum ventilation in greenhouse. 7. An effect of ventilation was the most excellent to open of all the windows or both the side windows, and it were also found orderly excellent to open of the side window and the skylight or the skylight only, to open of the side window only. 8. Temperature was varied as the equation of T=Tc+ (To-Tc)e-at, and the ranges of (a) values were limited within 0.34~0.68. 9. A variations of humidity were similar to that of temperature, s.

  • PDF

Effects of Heat-Treatment and the Addition of Copper on the Processing Window of 3.6wt%C-2.5wt%Si Austempered Ductile Cast Iron (3.6wt%C-2.5wt%Si 오스템퍼드 구상흑연주철의 프로세싱 윈도우에 미치는 열처리 및 구리 첨가의 영향)

  • Kwon, Do-Young;Oh, Jeong-Hyeok;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2021
  • The effects of austempering temperature, austenitizing temperature and time, added copper content and prior heat-treatment on the processing window of 3.6wt%C-2.5wt%Si ductile cast iron during austempering. The maximum processing window was obtained at 350℃ of austempering temperature. The processing window was increased with increased austenitizing temperature from 850 to 900℃; however, it decreased at 950℃. The processing window was increased with increased austenitizing time from 0.5 to 2 hours and rather decreased for 4 hours. The optimum condition of austenitizing was obained at 900℃ for 2 hours. The processing window was increased with copper content added in the range of 0.0~0.8wt%. The processing window was increased by prior normalizing heat-treatment and decreased by prior annealing in comparison with that for the as-cast state,

Thermo-optical Analysis and Correction Method for an Optical Window in Low Temperature and Vacuum

  • Ruoyan Wang;Ruihu Ni;Zhishan Gao;Lingjie Wang;Qun Yuan
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.213-221
    • /
    • 2023
  • The optical window, as a part of the collimator system, is the connector between the outside light source and the optical system inside a vacuum tank. The temperature and pressure difference between the two sides of the optical window cause not only thermoelastic deformation, but also refractive-index irregularities. To suppress the influence of these two changes on the performance of the collimator system, thermo-optical analysis is employed. Coefficients that characterize the deformations and refractive-index distributions are derived through finite-element analysis, and then imported into the collimator system using a user-defined surface in ZEMAX. The temperature and pressure difference imposed on the window seriously degrade the system performance of the collimator. A decentered and tilted lens group is designed to correct both field aberrations and the thermal effects of the window. Through lens-interval adjustment of the lens group, the diffraction-limited performance of the collimator can be maintained with a vacuum level of 10-5 Pa and inside temperature ranging from -100 ℃ to 20 ℃.

Temperature Control of Greenhouse Using Ventilation Window Adjustments by a Fuzzy Algorithm (퍼지제어에 의한 자연환기온실의 온도제어)

  • 정태상;민영봉;문경규
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • This study was carried out to develop a fuzzy control technique of ventilation window for controlling a temperature in a greenhouse. To reduce the fuzzy variables, the inside air temperature shop was taken as one of fuzzy variables, because the inside air temperature variation of a greenhouse by ventilation at the same window aperture is affected by difference between inside and outside air temperature, outside wind speed and the wind direction. Therefore, the antecedent variables for fuzzy algorithm were used the control error and its slop, which was same value as the inside air temperature slop during the control period, and the conclusion variable was used the window aperture opening rate. Through the basic and applicative control experiment with the control period of 3 minutes the optimum ranges of fuzzy variables were decided. The control error and its slop were taken as 3 and 1.5 times compared with target error in steady state, and the window opening rate were taken as 30% of full size of the window aperture. To evaluate the developed fuzzy algorithm in which the optimized 19 rules of fuzzy production were used, the performances of fuzzy control and PID control were compared. The temperature control errors by the fuzzy control and PID control were lower than 1.3$^{\circ}C$ and 2.2$^{\circ}C$ respectively. The accumulated operating size of the window, the number of operating and the number of inverse operating for the fuzzy control were 0.4 times, 0.5 times and 0.3 times of those compared with the PID control. Therefore, the fuzzy control can operating the window more smooth and reduce the operating energy by 1/2 times of PID control.

  • PDF

COMPARISON OF ATMOSPHERIC CORRECTION ALGORITHMS FOR DERIVING SEA SURFACE TEMPERATURE AROUND THE KOREAN SEA AREA USING NOAA/AVHRR DATA

  • Yoon, Suk;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • To retrieve Sea Surface Temperature(SST) from NOAA-AVHRR imagery the spilt window atmospheric correction algorithm is generally used. Recently, there have been various new algorithms developed to process these data, namely the variable-coefficient split-window, the R54 transmittance-ratio method, fixed-coefficient nonlinear algorithm, dynamic water vapour (DWV) correction method, Dynamic Water Vapour and Temperature algorithm (DWVT). We used MCSST (Multi-Channel Sea surface temperature) and NLSST(Non linear sea surface temperature) algorithms in this study. The study area is around the Korea sea area (Yellow Sea). We compared and analyzed with various methods by applying each Ocean in-situ data and satellite data. The primary aim of study is to verify and optimize algorithms. Finally, this study proposes an optimized algorithm for SST retrieval.

  • PDF

The Evaluation of Cooling Load by The Window Film Insulation in College Building (대학 건물에 적용한 열 차단 필름이 냉방부하에 미치는 영향 평가)

  • Kim, Seok-Hyun;Kang, Su-Hyun;Yu, Si-Wan;Cho, Young-Hum
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.549-552
    • /
    • 2012
  • Recently the world is trying to reduce carbon emissions for global warming. Reducing use of fossil fuels can decrease carbon emission. In this reason the construction field has tried to reduce the use of fossil fuels relating to heating and cooling of buildings. An energy loss through the window system is about 10 to 30 percent of energy consumption of the whole building. The use of window film insulation is increasing to control the heat loss at the windows. The window film insulation absorbs solar radiation and makes the surface temperature of windows high. In this study, window surface temperature is measured, and an impact on indoor air is identified after attaching window film insulation. Finally, we found that cooling load decreases through simulation.

  • PDF

Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light (자연광의 색온도 주기 재현을 위한 슬라이딩 윈도우 기반 이상치 판정 알고리즘)

  • Jeon, Geon Woo;Oh, Seung Taek;Lim, Jae Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Research in the field of health lighting has continued to advance to reproduce the color temperature of natural light which periodically changes. However, most of this research could only reproduce a uniform circadian color temperature of natural light, therefore failing to realize the characteristics of the circadian cycle of color temperature difference by latitude and longitude. To reproduce the color temperature of natural light on which the characteristics of a region are reflected, the collection technology of real-time characteristics of natural light is needed. If the color temperatures which are not within a periodical pattern due to climate changes, etc., are measured, it will be difficult to judge the occurrence (presence) of the anomalies and to reproduce the circadian cycle of the color temperature of natural light. Therefore, this study proposes an algorithm for judging the anomalies in real time based on the sliding window to reproduce the color temperature of natural light. First, the natural light characteristics DB collected through the on-site measurement were analyzed, the differential values at a one-minute interval were calculated and examined, and then representative color temperature circadian patterns by solar terms were drawn. The anomalies were then detected by the application of the sliding window that calculated the deviation of the color temperature for the measured color temperature data set, which was collected through RGB sensors, while moving along the time sequence. In addition, the presence of anomalies was verified through the comparison study between the detection results and the representative circadian cycle of the color temperature by solar term. The judgment method for the anomalies from the measured color temperature of natural light was proposed for the first time, confirming that the proposed method was capable of detecting the anomalies with an average accuracy of 94.6%.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.