• 제목/요약/키워드: Temperature vegetation dryness index (TVDI)

검색결과 7건 처리시간 0.037초

한반도 지역 산불 발생 위험도 예측에 TVDI 적용 가능성 고찰 (A Feasibility Study on the Application of TVDI on Accessing Wildfire Danger in the Korean Peninsula)

  • 김광년;김승희;원명수;장근창;최원준;이윤곤
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1197-1208
    • /
    • 2019
  • 산림지역에서의 관측은 평지에서의 관측에 비해 지상관측에 있어서 어려움을 가지고, 위성 관측자료는 지상의 지점기반 관측자료에 비해 높은 공간 해상도를 가진다. 이러한 이점을 이용하여 위성 관측자료는 산불발생 위험도를 추정하는 연구에 활용되어왔다. 위성 관측자료를 사용하는 여러 산불 관련 지수 중 TVDI(Temperature Vegetation Dryness Index)는 정규식생지수(Normalized Difference Vegetation Index; NDVI)와 지표면 온도(Land Surface Temperature; LST)를 기반으로 산불발생 위험도를 평가한다. TVDI가 기상과 식생의 건조도를 모두 고려하는 장점을 가지고 있지만 선행 연구에 따르면 TVDI는 여러 산불 관련 지수들에 비하여 한반도에서의 산불발생에 민감하지 않은 것으로 나타났다. 본 연구에서는 한반도에서 TVDI의 산불발생 위험도 표현능력을 향상시키기위해 여러가지 개선방법을 적용하였다. 지상에서 측정한 기온을 적용하여 TVDI의 정확도를 향상시키고, 월별로 최대, 최소 온도 회귀선을 구하여 TVDI에 계절효과를 적용하고자 했으며, 각 지역별로 TVDI를 계산하여 식생 유형 및 지역 기후를 고려하였다. 개선된 TVDI는 선정된 산불사례들을 통해 평가되었으며 산불발생 위험도 측면에서 향상된 성능을 보여주었다.

Landsat ETM+영상의 지표면온도와 NDVI 공간을 이용한 광역 증발산량의 도면화 (Regional Scale Evapotranspiration Mapping using Landsat 7 ETM+ Land Surface Temperature and NDVI Space)

  • 나상일;박종화
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.115-123
    • /
    • 2008
  • Evapotranspiration mapping using both meteorological ground-based measurements and satellite-derived information has been widely studied during the last few decades and various methods have been developed for this purpose. It is significant and necessary to estimate regional evapotranspiration (ET) distribution in the hydrology and water resource research. The study focused on analyzing the surface ET of Chungbuk region using Landsat 7 ETM imagery. For this process, we estimated the regional daily evapotranspiration on May 8, 2000. The estimation of surface evapotranspiration is based on the relationship between Temperature Vegetation Dryness Index (TVDI) and Morton's actual ET. TVDI is the relational expression between Normalized Difference of Vegetation Index (NDVI) and Land Surface Temperature (LST). The distribution of NDVI corresponds well with that of land-use/land cover in Chungbuk. The LST of several part of city in Chungbuk region is higher in comparison with the averaged LST. And TVDI corresponds too well with that of land cover/land use in Chungbuk region. The low evapotranspiration availability is distinguished over the large city like Cheongju-si, Chungju-si and the difference of evapotranspiration availability on forest and paddy is high.

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제30권3호
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.

Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구 (A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image)

  • 채성호;박숭환;이명진
    • 대한원격탐사학회지
    • /
    • 제33권6_1호
    • /
    • pp.931-946
    • /
    • 2017
  • 본 연구는 토양의 수분 상태를 고해상으로 관측 및 분석하고 농업분야에의 응용 가능성을 평가하기 위한 연구이다. 이를 위하여 Landsat-8 OLI(Operational Land Imager)/TIRS(Thermal Infrared Sensor)의 광학 및 열적외선 위성영상을 연구자료로 전라북도 농업지역을 포함(연구자료 내 46%)하는 2015, 2016, 및 2017년 5-6월에 촬영된 영상 세 장을 이용하였다. 연구지역의 각 영상 촬영일의 토양의 수분 상태는 SPI(Standardized Precipitation Index)3 가뭄지수를 통하여 효과적으로 획득할 수 있으며, 각 영상은 보통, 습윤, 및 건조한 토양 수분 조건을 갖는다. 이러한 각기 다른 토양수분 조건을 갖는 영상을 대상으로 토양의 수분 상태를 관측하고 SPI3 가뭄지수로부터 획득한 토양의 수분 상태와 비교/분석을 수행기 위하여, TVDI(Temperature Vegetation Dryness Index)를 계산하였다. TVDI는 Landsat-8 OLI/TIRS 위성영상으로부터 계산한 LST(Land Surface Temperature) 및 NDVI(Normalized Difference Vegetation Index)의 관계로부터 추정하여 계산된다. LST-NDVI의 형상 공간 내 픽셀의 분포에서 NDVI에 따른 LST의 최대/최소값을 추출하고 이를 대상으로 각각 선형회귀분석(linear regression analysis)을 통하여 NDVI에 따른 LST의 Dry/Wet edge를 결정할 수 있으며, 최종적으로 NDVI에 따른 두 edge 사이에서의 LST 값의 비율을 계산하여 TVDI 값을 계산한다. TVDI 값으로부터 관측된 영상 내 상대적인 토양의 수분 상태를 매우 습윤, 습윤, 보통, 건조, 매우 건조의 5단계로 분류하여 SPI3로부터 획득한 각각의 토양수분 상태와 비교하였다. 연구자료 획득시기인 5-6월 시기의 특성상 모내기로 인하여 영상 내 가장 많은 비율을 차지하는 논 지역의 영향으로 영상 전체 중, 약 62% 이상이 습윤 및 매우 습윤한 상태로 분류되었다. 또한, 보통으로 분류되는 픽셀은 영상 내 밭 지역의 영향 때문으로 분석되었다. 영상 전체에 대해서는 대략적으로 SPI3의 토양수분 상태와 대응하였지만 매우 건조, 습윤, 및 매우 습윤에 해당하는 세분류 결과에서는 SPI3 토양수분 상태와 대응하지 않았다. 또한, 영상에서 논과 밭의 농업지역을 추출 및 분류한 후, SPI3 토양수분 상태와 비교하였을 때, 논 지역의 토양수분 상태 관측 분류 결과는 매우 건조, 보통 및 매우 습윤에서, 밭 지역은 보통의 분류에서만 SPI3 가뭄지수와 대응하지 않았다. 이는 매우 건조한 나지 및 매우 습윤한 모내기로 인한 논 지역, 수계, 구름 및 산지 지형효과 등의 이상치로 인하여 잘못된 Dry/Wet edge 추정의 문제로 사료되어진다. 그러나 5-6월 시기의 농업지역 중, 밭 지역에서는 세분류된 토양의 수분 상태를 효과적으로 관측할 수 있었다. 고해상 광학위성 기반 농업지역에 대한 토양수분 상태의 시 공간적 변화를 관측하여 농업지역의 농업생산량예측 등 그 응용이 가능할 것으로 사료된다.

기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석 (Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea)

  • 공인학;김광진;이양원
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.107-120
    • /
    • 2017
  • 산불은 한번 발생하면 기상, 지형 등 여러 악조건으로 인해 효과적인 진화가 어려워 넓은 면적으로 확대되는 경우가 많다. 따라서 산불의 예방이 중요하기 때문에 세계 각국에 다양한 산불위험지수와 예측시스템이 존재한다. 그러나 이러한 산불위험지수 및 지면건조지수가 우리나라의 산불발생에 적용가능한지에 대한 객관적인 평가는 이루어진 바 없다. 이에 본 연구에서는 1.5km 격자의 LDAPS(Local Analysis and Prediction System) 기상자료 및 1km 격자의 MODIS(Moderate-resolution Imaging Spectroradiometer) 위성자료를 활용하여 각종 산불위험지수와 지면건조지수의 우리나라 산불발생에 대한 민감도분석을 수행하고자 한다. 기상기반 산불위험지수로는 호주의 FFDI(forest fire danger index), 캐나다의 FFMC(fine fuel moisture code), 미국의 HI(Haines index), 그리고 학술연구에서 제시된 MNI(modified Nesterov index)를 산출하였고, 위성기반 지면건조지수인 NDDI(normalized difference drought index)와 TVDI(temperature vegetation dryness index)를 산출하여 우리나라 산불발생에 대한 적용가능성 실험을 수행하였다. 2013년 1월부터 2017년 5월까지 발생한 피해면적 1ha가 넘는 산불 120건과 6종류의 지수를 비교한 결과, FFDI는 피해면적 10ha가 넘는 모든 산불에 대하여 극도로 높은 CDF(cumulative density function) 값을 나타냈으며, FFDI와 FFMC는 피해면적 3ha가 넘는 산불에 대하여 평균 CDF 값이 0.95가 넘게 나타나는 등 매우 우수한 성능을 보였다. 반면, MNI는 이슬점온도와 기온의 차이가 크지 않은 우리나라의 계절적 특성 때문에 2월의 산불예측을 거의 하지 못하였고, TVDI는 전체적으로 산불발생에 대한 민감도가 낮은 것으로 나타났다. NDDI는 피해면적의 크기에 상관없이 평균 CDF 값이 안정적으로 높게 산출되어 위성기반 지면건조지수로서 보조적인 활용가능성이 있을 것으로 보인다. 이러한 산불위험지수와 지면건조지수를 취사선택 및 융합하여 활용한다면, 우리나라 산불예측에 일조할 수 있을 것으로 사료된다.

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF

위성기반 증발산량 및 토양수분량 산정 국내 연구동향 (Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea)

  • 최가영;조영현
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1141-1180
    • /
    • 2022
  • 최근 수문 및 수자원 분야에서 위성영상의 활용성이 높아짐에 따라 관련 전용 위성 개발연구와 연계하여 위성을 활용한 증발산량과 토양수분량 산정 연구의 필요성이 강조되고 있다. 본 연구에서는 이러한 위성을 기반으로 증발산량 및 토양수분량의 국내 연구현황과 그 산정 방법론을 조사하여 현재까지의 연구동향을 파악하고자 하였다. 국내 연구현황을 세부 방법론 별로 살펴본 결과 일반적으로 증발산량의 경우는 Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC)과 같은 에너지수지 기반 모형과 Penman-Monteith (PM) 및 Priestley-Taylor (PT) 산출식을 기반으로 산정되었으며, 토양수분량의 경우 능동형(AMSR-E, AMSR2, MIRAS, SMAP) 및 수동형(ASCAT, SAR)와 같은 마이크로파 센서를 통한 산정이 주를 이루었다. 통계적 측면에서는 증발산량 및 토양수분량 공통적으로 회귀식 및 인공지능을 이용한 산출사례를 찾을 수 있었다. 또한 위성기반 자료들을 이용한 Evaporative Stress Index (ESI), Temperature-Vegetation Dryness Index (TVDI), Soil Moisture Deficit Index (SMDI) 등의 다양한 지표를 산정하여 가뭄 특성파악에 적용한 연구 사례도 다수 있었으며, 지표모형(Land Surface Model, LSM)을 기반으로 하여 위성 다중센서에서 얻을 수 있는 주요 자료들을 활용해 증발산량과 토양수분량의 수문순환인자를 산출하기도 하였다. 본 논문에서는 이렇게 기존 연구사례 조사 및 내용파악 과정을 통해 위성을 활용한 주요 세부 방법론을 비교·검토 제시함으로써 관련 연구분야 기준 참고자료로의 활용 및 향후 위성기반 관련 수문순환 자료 산출 고도화 연구의 초석을 다지고자 한다.