산림지역에서의 관측은 평지에서의 관측에 비해 지상관측에 있어서 어려움을 가지고, 위성 관측자료는 지상의 지점기반 관측자료에 비해 높은 공간 해상도를 가진다. 이러한 이점을 이용하여 위성 관측자료는 산불발생 위험도를 추정하는 연구에 활용되어왔다. 위성 관측자료를 사용하는 여러 산불 관련 지수 중 TVDI(Temperature Vegetation Dryness Index)는 정규식생지수(Normalized Difference Vegetation Index; NDVI)와 지표면 온도(Land Surface Temperature; LST)를 기반으로 산불발생 위험도를 평가한다. TVDI가 기상과 식생의 건조도를 모두 고려하는 장점을 가지고 있지만 선행 연구에 따르면 TVDI는 여러 산불 관련 지수들에 비하여 한반도에서의 산불발생에 민감하지 않은 것으로 나타났다. 본 연구에서는 한반도에서 TVDI의 산불발생 위험도 표현능력을 향상시키기위해 여러가지 개선방법을 적용하였다. 지상에서 측정한 기온을 적용하여 TVDI의 정확도를 향상시키고, 월별로 최대, 최소 온도 회귀선을 구하여 TVDI에 계절효과를 적용하고자 했으며, 각 지역별로 TVDI를 계산하여 식생 유형 및 지역 기후를 고려하였다. 개선된 TVDI는 선정된 산불사례들을 통해 평가되었으며 산불발생 위험도 측면에서 향상된 성능을 보여주었다.
Evapotranspiration mapping using both meteorological ground-based measurements and satellite-derived information has been widely studied during the last few decades and various methods have been developed for this purpose. It is significant and necessary to estimate regional evapotranspiration (ET) distribution in the hydrology and water resource research. The study focused on analyzing the surface ET of Chungbuk region using Landsat 7 ETM imagery. For this process, we estimated the regional daily evapotranspiration on May 8, 2000. The estimation of surface evapotranspiration is based on the relationship between Temperature Vegetation Dryness Index (TVDI) and Morton's actual ET. TVDI is the relational expression between Normalized Difference of Vegetation Index (NDVI) and Land Surface Temperature (LST). The distribution of NDVI corresponds well with that of land-use/land cover in Chungbuk. The LST of several part of city in Chungbuk region is higher in comparison with the averaged LST. And TVDI corresponds too well with that of land cover/land use in Chungbuk region. The low evapotranspiration availability is distinguished over the large city like Cheongju-si, Chungju-si and the difference of evapotranspiration availability on forest and paddy is high.
Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
대한원격탐사학회지
/
제30권3호
/
pp.375-381
/
2014
Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.
본 연구는 토양의 수분 상태를 고해상으로 관측 및 분석하고 농업분야에의 응용 가능성을 평가하기 위한 연구이다. 이를 위하여 Landsat-8 OLI(Operational Land Imager)/TIRS(Thermal Infrared Sensor)의 광학 및 열적외선 위성영상을 연구자료로 전라북도 농업지역을 포함(연구자료 내 46%)하는 2015, 2016, 및 2017년 5-6월에 촬영된 영상 세 장을 이용하였다. 연구지역의 각 영상 촬영일의 토양의 수분 상태는 SPI(Standardized Precipitation Index)3 가뭄지수를 통하여 효과적으로 획득할 수 있으며, 각 영상은 보통, 습윤, 및 건조한 토양 수분 조건을 갖는다. 이러한 각기 다른 토양수분 조건을 갖는 영상을 대상으로 토양의 수분 상태를 관측하고 SPI3 가뭄지수로부터 획득한 토양의 수분 상태와 비교/분석을 수행기 위하여, TVDI(Temperature Vegetation Dryness Index)를 계산하였다. TVDI는 Landsat-8 OLI/TIRS 위성영상으로부터 계산한 LST(Land Surface Temperature) 및 NDVI(Normalized Difference Vegetation Index)의 관계로부터 추정하여 계산된다. LST-NDVI의 형상 공간 내 픽셀의 분포에서 NDVI에 따른 LST의 최대/최소값을 추출하고 이를 대상으로 각각 선형회귀분석(linear regression analysis)을 통하여 NDVI에 따른 LST의 Dry/Wet edge를 결정할 수 있으며, 최종적으로 NDVI에 따른 두 edge 사이에서의 LST 값의 비율을 계산하여 TVDI 값을 계산한다. TVDI 값으로부터 관측된 영상 내 상대적인 토양의 수분 상태를 매우 습윤, 습윤, 보통, 건조, 매우 건조의 5단계로 분류하여 SPI3로부터 획득한 각각의 토양수분 상태와 비교하였다. 연구자료 획득시기인 5-6월 시기의 특성상 모내기로 인하여 영상 내 가장 많은 비율을 차지하는 논 지역의 영향으로 영상 전체 중, 약 62% 이상이 습윤 및 매우 습윤한 상태로 분류되었다. 또한, 보통으로 분류되는 픽셀은 영상 내 밭 지역의 영향 때문으로 분석되었다. 영상 전체에 대해서는 대략적으로 SPI3의 토양수분 상태와 대응하였지만 매우 건조, 습윤, 및 매우 습윤에 해당하는 세분류 결과에서는 SPI3 토양수분 상태와 대응하지 않았다. 또한, 영상에서 논과 밭의 농업지역을 추출 및 분류한 후, SPI3 토양수분 상태와 비교하였을 때, 논 지역의 토양수분 상태 관측 분류 결과는 매우 건조, 보통 및 매우 습윤에서, 밭 지역은 보통의 분류에서만 SPI3 가뭄지수와 대응하지 않았다. 이는 매우 건조한 나지 및 매우 습윤한 모내기로 인한 논 지역, 수계, 구름 및 산지 지형효과 등의 이상치로 인하여 잘못된 Dry/Wet edge 추정의 문제로 사료되어진다. 그러나 5-6월 시기의 농업지역 중, 밭 지역에서는 세분류된 토양의 수분 상태를 효과적으로 관측할 수 있었다. 고해상 광학위성 기반 농업지역에 대한 토양수분 상태의 시 공간적 변화를 관측하여 농업지역의 농업생산량예측 등 그 응용이 가능할 것으로 사료된다.
산불은 한번 발생하면 기상, 지형 등 여러 악조건으로 인해 효과적인 진화가 어려워 넓은 면적으로 확대되는 경우가 많다. 따라서 산불의 예방이 중요하기 때문에 세계 각국에 다양한 산불위험지수와 예측시스템이 존재한다. 그러나 이러한 산불위험지수 및 지면건조지수가 우리나라의 산불발생에 적용가능한지에 대한 객관적인 평가는 이루어진 바 없다. 이에 본 연구에서는 1.5km 격자의 LDAPS(Local Analysis and Prediction System) 기상자료 및 1km 격자의 MODIS(Moderate-resolution Imaging Spectroradiometer) 위성자료를 활용하여 각종 산불위험지수와 지면건조지수의 우리나라 산불발생에 대한 민감도분석을 수행하고자 한다. 기상기반 산불위험지수로는 호주의 FFDI(forest fire danger index), 캐나다의 FFMC(fine fuel moisture code), 미국의 HI(Haines index), 그리고 학술연구에서 제시된 MNI(modified Nesterov index)를 산출하였고, 위성기반 지면건조지수인 NDDI(normalized difference drought index)와 TVDI(temperature vegetation dryness index)를 산출하여 우리나라 산불발생에 대한 적용가능성 실험을 수행하였다. 2013년 1월부터 2017년 5월까지 발생한 피해면적 1ha가 넘는 산불 120건과 6종류의 지수를 비교한 결과, FFDI는 피해면적 10ha가 넘는 모든 산불에 대하여 극도로 높은 CDF(cumulative density function) 값을 나타냈으며, FFDI와 FFMC는 피해면적 3ha가 넘는 산불에 대하여 평균 CDF 값이 0.95가 넘게 나타나는 등 매우 우수한 성능을 보였다. 반면, MNI는 이슬점온도와 기온의 차이가 크지 않은 우리나라의 계절적 특성 때문에 2월의 산불예측을 거의 하지 못하였고, TVDI는 전체적으로 산불발생에 대한 민감도가 낮은 것으로 나타났다. NDDI는 피해면적의 크기에 상관없이 평균 CDF 값이 안정적으로 높게 산출되어 위성기반 지면건조지수로서 보조적인 활용가능성이 있을 것으로 보인다. 이러한 산불위험지수와 지면건조지수를 취사선택 및 융합하여 활용한다면, 우리나라 산불예측에 일조할 수 있을 것으로 사료된다.
The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.
최근 수문 및 수자원 분야에서 위성영상의 활용성이 높아짐에 따라 관련 전용 위성 개발연구와 연계하여 위성을 활용한 증발산량과 토양수분량 산정 연구의 필요성이 강조되고 있다. 본 연구에서는 이러한 위성을 기반으로 증발산량 및 토양수분량의 국내 연구현황과 그 산정 방법론을 조사하여 현재까지의 연구동향을 파악하고자 하였다. 국내 연구현황을 세부 방법론 별로 살펴본 결과 일반적으로 증발산량의 경우는 Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC)과 같은 에너지수지 기반 모형과 Penman-Monteith (PM) 및 Priestley-Taylor (PT) 산출식을 기반으로 산정되었으며, 토양수분량의 경우 능동형(AMSR-E, AMSR2, MIRAS, SMAP) 및 수동형(ASCAT, SAR)와 같은 마이크로파 센서를 통한 산정이 주를 이루었다. 통계적 측면에서는 증발산량 및 토양수분량 공통적으로 회귀식 및 인공지능을 이용한 산출사례를 찾을 수 있었다. 또한 위성기반 자료들을 이용한 Evaporative Stress Index (ESI), Temperature-Vegetation Dryness Index (TVDI), Soil Moisture Deficit Index (SMDI) 등의 다양한 지표를 산정하여 가뭄 특성파악에 적용한 연구 사례도 다수 있었으며, 지표모형(Land Surface Model, LSM)을 기반으로 하여 위성 다중센서에서 얻을 수 있는 주요 자료들을 활용해 증발산량과 토양수분량의 수문순환인자를 산출하기도 하였다. 본 논문에서는 이렇게 기존 연구사례 조사 및 내용파악 과정을 통해 위성을 활용한 주요 세부 방법론을 비교·검토 제시함으로써 관련 연구분야 기준 참고자료로의 활용 및 향후 위성기반 관련 수문순환 자료 산출 고도화 연구의 초석을 다지고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.