• Title/Summary/Keyword: Temperature stability

Search Result 4,636, Processing Time 0.031 seconds

Changes of Emulsifying and Foaming Properties of Soy Protein with an Calcium , HCI and Microbial IJ-3 Strain Enzyme

  • Park, Yang-Won;Kim, Young-Jeon
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.53-58
    • /
    • 1996
  • The characterstics of the soy protein curd(eczyme-, HCI- and Ca-surd) were shown by scanning electron micrographs and gel electrophoreis. The emulsion stability of enzyme-curd showed high value in the range of pH 2~10and wide range of temperature(20~8$0^{\circ}C$). While at the isoelectric point(pH5.0), the emulsion stability of the HCI-and Ca-curd was decreased remarkably, and the emulsion stability of temperature was reduced quickly to the 60% and 40% at the 4$0^{\circ}C$. The foam stability of enzyme-curd was slightly higher than that HCI-and CA-curd in all ranges of pH and temperature. The feature of SEM of enzyme-cured produced degradation products faster than that of the HCI- and Ca-curd.

  • PDF

Development Process of Mechanical Structure for a Large Radar (대형 레이더 기계구조부 개발 절차)

  • Shin, Dongjun;Lee, Jonghak;Kang, Youngsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Advanced Lubricants for Heat Engines

  • Hsu, S.M.;Li, H.;Perez, J.M.;Ku, C.S.;Wang, J.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.47-54
    • /
    • 1995
  • An advanced liquid lubricants for heat engines has been developed and tested successfully in a prototype engine. The lubricant possesses superior oxidation stability and high temperature stability and is capable of surviving for a minimum of three minutes at 425$^{\circ}$C (800$^{\circ}$C) at the ring zone and maintains stability at an oil sump temperature of 171$^{\circ}$C. The lubricant has been evaluated by the Cummins Engine Co. Out of a field of several dozens of lubricant, six lubricant was selected for a prototype 200 hours endurance testing. The NIST lubricant was one of the two lubricants that successfully finished the endurance testing. This paper describes the key lubricant considerations including oxidation and thermal stability, volatility, deposit control. The engine test conditions and the results will be presented.

Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins (실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향)

  • Kwak, Geun-Ho;Park, Soo-Jin;Park, Jun-Ha;Kim, Kong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.701-706
    • /
    • 1999
  • The effect of siloxane oligomer content on thermal stability and internal stress of DGEBA epoxy resin was investigated. Siloxane-epoxy polymers having terminal epoxy group were prepared by reaction of siloxane-DDM prepolymer with DGEBA epoxy resin. Thermal stability was studied in terms of the initial decomposition temperature(IDT), temperature of maximum rate of weight loss($T_{max}$), integral procedural decomposition temperature(IPDT), and decomposition activation energy($E_t$) using TGA data. The thermal stability increased with increasing the siloxane oligomer content and showed a maximum value in the case of 5 wt% siloxane oligomer content in the blend system. While, the coefficient of thermal expansion(${\alpha}_r$) and the flexural modulus($E_r$) allowed us to study internal stress of the blend system. As the content of siloxane oligomer increases, the internal stress systematically decreases as decreasing both ${\alpha}_r$ and $E_r$.

  • PDF

Electrical Properties and Temperature Stability of Dysprosium and Erbium Co-doped Barium Titanate with Perovskite Structure for X7R MLCCs (Dysprosium과 Erbium이 동시 첨가된 X7R MLCC용 페로브스카이트 BaTiO3의 전기적특성과 온도안정성)

  • Noh, Tai-Min;Kim, Jin-Seong;Ryu, Ji-Seung;Lee, Hee-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.323-327
    • /
    • 2011
  • The effects of $Dy_2O_3$ and $Er_2O_3$ co-doping on electrical properties and temperature stability of barium titanate ($BaTiO_3$) ceramics were investigated in terms of microstructure and structural analysis. The dielectric constant and the insulation resistance (IR) of 0.7 mol% $Dy_2O_3$ and 0.3 mol% $Er_2O_3$ co-doped dielectrics had about 60% and 20% higher than the values of undoped one, respectively, and the temperature coefficient of capacitance (TCC) met the X7R specification. The addition of $Dy_2O_3$ contributed to electrical properties caused by increase of tetragonality; however, preferential diffusion of $Dy^{3+}$ ions toward A site in $BaTiO_3$ grain exhibited an adverse effect on temperature stability by grain growth. On the other hand, The $Er_2O_3$ addition in $BaTiO_3$ could affect the TCC behavior and the IR with suppression of grain growth caused by reinforcement of grain boundary and electrical compensation. Therefore, the enhanced electrical properties and temperature stability through the co-doping could be deduced from the increase of tetragonality and the suppression of grain growth.

The Annual Averaged Atmospheric Dispersion Factor and Deposition Factor According to Methods of Atmospheric Stability Classification

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Background: This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Materials and Methods: Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. Results and Discussion: All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. Conclusion: These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

Oxidative Stability of Soybean Oil after Frying under the Different Storage Temperature

  • Kim, Youngsung;Choi, Jinyoung;Kwon, Taeeun
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • The purpose of current study was to evaluate the oxidative stability of soybean oil after frying according to storage temperature. The soybean oil after 10 times deep fat frying with potato sticks (10% w/w of oil) were stored during 10 days at 30, 60 and $90^{\circ}C$ and chemical properties were determined. The acid value and peroxide value were the highest and the iodine value were the lowest when the oil stored at $90^{\circ}C$. Expecially, the production rate of peroxide was fast at over $60^{\circ}C$. According to the results, frying oil should not be stored for more than 6 days at $30^{\circ}C$ after use. Since the oil used had already produced unstable peroxides, oxidation could proceed relatively quickly even at low temperatures. Therefore, it is desirable to keep the used oil at a temperature as low as possible.

Effect of Transition Metal on the Thermal Stability and Mechanical Property of Fe-based Amorphous Alloys (Fe기 비정질합금의 열적안정성 및 기계적 성질에 미치는 천이금속의 영향)

  • Gook, Jin Seon;Yoon, Dong Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.345-349
    • /
    • 2001
  • This study has investigated the effect of thermal stability and mechanical property of $Fe_{80-X}P_{10}C_6B_4M_X$(X=2, 4, 6, M=transition metal) amorphous alloys fabricated by the melt-spun process. The glass transition temperature($T_g$), crystallization temperature($T_x$) and hardness increase with decreasing electron concentration (e/a) from about 7.38 to 7.18. The decrease of e/a implies the increase in the attractive bonding state between the M elements and other constituent element. The decrease in a/e leads to the enhancement of the attractive bonding state among the constituent elements which is favorable for the increase in $T_g$, $T_x$ and hardness.

  • PDF

The influence of substrate temperature on the chemical stability of WO3Films prepared by electron beam deposition (기판온도가 전자비임으로 제작된 텅스텐 산화물박막의 화학적 안정성에 미치는 영향)

    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.365-370
    • /
    • 1996
  • Electrochromic $WO_3$ films were prepared by using an electron-beam deposition method. The dependence of the chemical stability of film on the substrate temperature was studied. From the experimental results, The optical property and chemical stability of as-deposited films strongly depended on the substrate temperature. The $WO_3$ film prepared at a substrate temperature of $80^{\circ}C$ was found to be the most stable when subjected to repeated coloring and bleaching cycles in an organic 0.6M $LiClO_4$ solution.

  • PDF