• 제목/요약/키워드: Temperature response function

검색결과 293건 처리시간 0.027초

Preventive Effects of a Probiotic Mixture in an Ovalbumin-Induced Food Allergy Model

  • Shin, Hee-Soon;Eom, Ji-Eun;Shin, Dong-Uk;Yeon, Sung-Hum;Lim, Seong-Il;Lee, So-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.65-76
    • /
    • 2018
  • Although there has been a steady increase in the prevalence of food allergies worldwide in recent decades, no effective therapeutic strategies have been developed. Modulation of the gut microbiota composition and/or function through probiotics has been highlighted as a promising target for protection against food allergies. In this study, we aimed to investigate the allergy-reducing effects of a probiotic mixture (P5: Lactococcus lactis KF140, Pediococcus pentosaceus KF159, Lactobacillus pentosus KF340, Lactobacillus paracasei 698, and Bacillus amyloliquefaciens 26N) in mice with ovalbumin (OVA)-induced food allergy. Administration of P5 significantly suppressed the oral OVA challenge-induced anaphylactic response and rectal temperature decline, and reduced diarrhea symptoms. Moreover, P5 also significantly inhibited the secretion of IgE, Th2 cytokines (interleukin (IL)-4, IL-5, IL-10, and IL-13), and Th17 cytokines (IL-17), which were increased in mice with OVA-induced food allergy, and induced generation of CD4+Foxp3+ regulatory T cells. These results revealed that P5 may have applications as a preventive agent against food allergy.

빗살전극형 정전용량형 습도센서와 그 신호처리회로의 설계 제작 (The Design and fabrication of Capacitive Humidity Sensor Having Interdigital Electrodes and Its Signal Processing Circuit)

  • 강정호;이재용;김우현
    • 전기학회논문지P
    • /
    • 제55권1호
    • /
    • pp.26-30
    • /
    • 2006
  • For the purpose of developing capacitive humidity sensor having interdigital electrodes, interdigital electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thickness. For the development of ASIC, switched capacitor signal processing circuits for capacitive humidity sensor were designed and simulated by Cadence using $0.25{\mu}m$ CMOS process parameters. The signal processing circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control. The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is $0.4%R.H./^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of $3%R.H.{\sim}98%R.H.$. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigital electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc.

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • ;고광은;박승민;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발 (Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine)

  • 배종욱
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory

  • Jahangiri, Reza;Jahangiri, Hadi;Khezerloo, Hamed
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1541-1555
    • /
    • 2015
  • In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.

육체운동에 의해 유발되는 화학물질에 대한 반응성의 변화 (Alteration in Response to Chemicals Induced by Physical Exercise)

  • 김영철
    • Toxicological Research
    • /
    • 제18권3호
    • /
    • pp.215-226
    • /
    • 2002
  • Acute or repeated physical exercise affects a large number of physiological parameters including hemodynamics, respiration, pH, temperature, gastrointestinal function and biotransformation, which determine the pharmacokinetics of drugs and chemicals. The rate and the amount of a chemical reaching the active site are altered by physical exercise, which results in significant changes in pharmacolosical/toxicological activity of the chemical. This aspect of physical exercise has vast implication in therapeutics and in safety evaluation, particularly for chemicals that have a low margin of safety. However there appears to be a wide inter- and intraindividual variation in the effects of physical exercise depend-ing on the duration, intensity and type of exercise, and also on the properties of each chemical. It is suggested that more studies need to be done to determine which factor(s) plays a major role in the disposition of chemicals in human/animals performing physical exercise. Certain chemicals induce severe toxicity due to metabolic conversion to reactive intermediate metabolites. it is suggested that repeated exercise may enhance the free radical scavenging system by increasing the activity of antioxidant enzymes. This area of research remain to be explored to elucidate the interaction of exercise and chemical on the antioxidant system.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발 (Development of a New Rapid Compression-Expansion Machine for Combustion Test of Internal Combustion Engine)

  • 정남훈;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.69-75
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature, composition of gas in the cylinder, existence of cylinder lubricant etc. Rapid compression expansion machine, the position and speed of piston of which are able to be controlled by means of a system controlled electrically, and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to copy with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled, hydraulically actuated, and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement on frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder, those are the key function for the in-cylinder combustion experiments on internal combustion engines.

  • PDF

빗살형 전극을 가지는 정전용량형 습도센서와 그 신호처리회로의 설계와 제작 (The Design and Fabrication of Capacitive Humidity Sensor Having Interdigit Electrodes and its Signal Conditional Circuitry)

  • 박세광;강정호;박진수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권3호
    • /
    • pp.144-148
    • /
    • 2001
  • For the purpose of developing capacitive humidity sensor having interdigit electrodes, interdigit electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thichness. For the development of ASIC, switched capacitor signal conditioning circuits for capacitive humidity sensor were designed and simulated by cadence using 0.25um CMOS process parameters. The signal conditioning circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is 0.4%R.H./$^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of 3%R.H. ${\sim}$ 98%R.H.. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigit electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc..

  • PDF