• Title/Summary/Keyword: Temperature reduction

Search Result 4,561, Processing Time 0.035 seconds

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

Radurization of the Microorganisms Contaminated in Beef (우육에 오염된 미생물의 감마선 살균)

  • Yook, Hong-Sun;Kim, Sung;Lee, Kyong-Haeng;Kim, Yeung-Ji;Kim, Jung-Ok;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.212-218
    • /
    • 1999
  • The effects of gamma irradiation (1, 3 and 5 kGy) and packaging methods (air and vacuum) on the growth of microorganisms contaminated in beef was investigated during storage at different temperatures (-20, 4 and $25^{\circ}C$). The initial microbial population of beef was $8.0{\sim}10^2\;CFU/g$ in total aerobic bacteria, $2.0{\times}10^2\;CFU/g$ in total lactic acid bacteria, $8.0{\times}10^1\;CFU/g$ in molds, $6.0{\times}10^2\;CFU/g$ in Pseudomonas sp. and $7.0{\times}10^2\;CFU/g$ in coliforms, respectively. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such dose and subsequent storage at less than $4^{\circ}C$ could ensure hygienic quality prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. The different packaging methods of beef caused negligible changes in the growth of microorganisms during storage.

  • PDF

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • Lee, Seok Hyeong;Park, Jong Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.267-267
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films have been of interest due to their lower dielectric constant and compatibility with existing process tools. However instability issues related to bond and increasing dielectric constant to water absorption when the SiOF films was exposured to atmospheric ambient. Therefore, the purpose of this research is to study the effect of post oxygen plasma treatment on the resistance of moisture absorption and reliability of SiOF film. Improvement of moisture absorption resistance of SiOF film is due to the forming of thin SiO₂layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the number of Si-F bonds that tend to associate with OH bonds. However, the dielectric constant was increased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and 300℃ of substrate temperature.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Metallurgical Investigation and Functional Consideration of the Iron Swords from Bongseon-ri Site in Seocheon (서천 봉선리유적 출토 철제대도의 금속학적 조사 및 기능성 고찰)

  • Cho, Hyun Kyung;Jung, Young Sang;Cho, Nam Chul;Lee, Hun
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.111-122
    • /
    • 2014
  • In Bongseon-ri site, the central type and the local type of the Baekje tombs co-exist together. Many swords with ring pommel which to regional leaders in Seocheon the Beekje government granted are excavated from these tombs. These represent that the regional leaders were controlled by the Baekje government gradually. Four swords with ring pommel and one simple sword are investigated metallurgically and we seek what swords have a function of weapon or what sword produce for grave goods. The simple sword is made by solid carburizing technology and quenching of heat treatment so it's possibly used as a weapon. In contrast, four swords with ring pommel has little chance of weapon because the blade of swords consists of microstructure that have low hardness and the back of swords don't have microstructure can absorb the shock. The most identical characteristic of the simple sword and swords with ring pommel is that they are possible to classify clearly into practical/non-practical tools. Additionally, according to non-metallic inclusion analysis result of these swords, w$\ddot{u}$stite and glass phase are found together. Thus, it is able to say that reduction method in low temperature is applied during smelting process.

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Effect of Water Temperature and Packing Type on Quality of Fresh-cut Chicory (세척수 온도와 포장 형태에 따른 신선편이 치커리의 품질 변화)

  • Chang, Min-Sun;Kim, Gun-Hee;Kim, Byeong-Sam
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.279-287
    • /
    • 2007
  • Quality attributes of fresh-cut chicory (Clchorium intybus L.var. foliosum) treated with hydrocooling and packing type were investigated in terms of weight loss, respiration, vitamin C content, microbial load and sensory properties during storage at $4^{\circ}C\;and\;10^{\circ}C$. Fresh chicory was trimmed and washed 3 times with cold water $(1^{\circ}C,\;5^{\circ}C)$ and tap water $(10^{\circ}C)$ for 30 sec and then packaged in polypropylene (PP) film bag and polyethylene terephthalate (PETE) tray, and stored for 9 days at $4^{\circ}C\;and\;10^{\circ}C$. Weight loss was decreased by washing and packing generally. Respiration rate was increased slowly in the storage at $4^{\circ}C$. Vitamin C content of chicory packaged within PETE tray were decreased gradually during storage at $4^{\circ}C$. Hydrocooling and packing within PETE tray treatments resulted in approximately 1-2 log CFU/g reduction of microbial load.

A Study on the Livestock Feed Measuring Sensor and Supply Management System Implementation based on the IoT (IoT 기반의 축산사료 측정 장치 및 사료 공급 시스템 구현)

  • An, Wonyoung;Chang, YunHi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.442-454
    • /
    • 2017
  • As the demand for meat products has steadily increased in Korea, so the livestock industry has full grown. However, the opening of import meat products is taking a toll on the local industry. Cost reduction on livestock feed, which comprises the majority of costs involved in the industry is urgent to gain a competitive edge. As Internet of Things (IoT) technologies are being applied across a multiple of industries, so are the cases of applied Smart Farm technology for efficient production. The following research aims to utilize IoT technologies to measure, in real time, the rate of depletion of feed and remaining amount and to propose an effective automated reorder & delivery system. First, a method of utilization of ultrasonic and temperature/humidity sensors to obtain corresponding data of remaining feed in the Feedbin is proposed. In addition, a method of sending the obtained data via on-the-farm gateway to Supply Chain Management (SCM) servers is proposed. Finally, utilization of the stored data to construct an automated reorder & delivery service system is proposed. It is in the researcher's intention to contribute to and enable the local livestock industry with the application of various IoT services.