• Title/Summary/Keyword: Temperature programmed-desorption (TPD)

Search Result 79, Processing Time 0.025 seconds

Synthesis and characterization of MCM-41 type aluminosilicates (MCM-41형태의 알루미노실리케이트의 합성특성)

  • Lee, Sung-Hee;Lee, Dong-Kyu;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1231-1234
    • /
    • 2003
  • A sample procedure has been described to room temperature synthesis, mesoporous aluminosilicate materials with strong surface acidity by using a cationic surfactnat cetyltrimethylammonium bromide(CTABr) as the template agent. All samples were charecterized by X-ray diffraction(XRD) and nitrogen adsorption. The crystallinity and surface area of MCM-41 type aluminosilicats decrease with decreasing of Si/Al ratio. The influence of the aluminum contents of MCM-41 on the coordination of Al and on the acidity is studied by $^{27}Al$ MAS NMR and temperature programmed desorption of ammonia(TPD). It was shown that the incorporation of Al atoms into the framework causes increasing of acid site surface. And then Al atoms in the framework were incorporated tetrahedrally in structure, which gave a rise to cationic sites in the framework.

  • PDF

$NO_x$ Chemistry Over Rutile $TiO_2$(110) Surfaces

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.131-131
    • /
    • 2012
  • We present our recent temperature-programmed desorption (TPD) study on catalytic reductions of $NO_x$ such as NO, $NO_2$, and $N_2O$ over rutile $TiO_2$(110) surfaces. Our results indicate that $NO_2$/NO readily reacts to give NO/$N_2O$ desorption at the substrate temperature as low as 100 K/70 K. Interestingly, $N_2O$, however, does not dissociate into $N_2$ and $O_{BBO}$ over the oxygen vacancy on the $TiO_2$(110) surface. Successive reduction of NO and $NO_2$ into $N_2O$ and NO, respectively, leaves oxygen atoms on the $TiO_2$(110) surface in a form of $O_{ad}$, which can induce additional reductive channels of NO and $NO_2$ at higher temperatures up to 400 K. During the repeated TPD cycles of $NO_x$, our x-ray photoelectron spectroscopy (XPS) analysis indicates that no N atom accumulates on the $TiO_2$ surface.

  • PDF

CO Adsorption on Three-Dimensional and Multilayered Platinum Electrode Prepared through Transfer Printing (전사 인쇄에 의한 3D와 다층의 Pt 전극의 CO가스 흡착)

  • Jeong, Yoon-Seo;Choi, You-Jeong;Shin, Jeong-Hee;Jeong, Young-Hun;Paik, Jong-Hoo;Yoon, Dae-Ho;Cho, Jeong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.232-236
    • /
    • 2020
  • Three-dimensional (3D) multilayered Pt electrodes were fabricated to develop a porous electrode using a pattern-transfer printing process. The Pt thin films were deposited using a transferred sputtering pattern having a 250 nm line width on the substrate, and the uniform line patterns were efficiently transferred using our proposed method. Temperature-programmed desorption (TPD) analyses were used to evaluate the porosity of the electrodes. It was possible to distinguish between two resolved maxima at 168 and 227 ℃, which could be described in terms of desorption reactions on the Pt (111) planes. The results of the TPD analysis of the 3D and multilayered Pt electrodes prepared through transfer printing were compared to those of an electrode fabricated through screen printing using a commercial Pt-carbon paste commonly used as porous electrodes. It was confirmed that the 3D multilayered electrodes exhibited a desorption concentration approximately 100 times higher than that of the Pt-carbon composite electrode, and the desorption concentration increased by approximately 0.02 mg/mol per layer. The 3D multilayered electrode effectively functions as a porous electrode and a catalyst.

A Study on the Methanation of Carbon Dioxide over Ni/Y-type Zeolites (Y형 제올라이트 담지 니켈촉매상에서 이산화탄소의 메탄화반응)

  • Lee, Kwan-Yong;Kim, Hyung-Wook;Kim, Geon-Joong;Ahn, Wha-Seung
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.365-372
    • /
    • 1993
  • $CO_2$ methanation was performed over Ni supported on cation-exchanged Y zeolites under atmospheric pressure at $250{\sim}550^{\circ}C$ and $H_2/CO_2$ mole ratio of 4. Adsorption strength between carbon dioxide and nickel was found to be Influenced by the cation exchanged in the zeolite. TPD(Temperature-programmed desorption) results show that the adsorption strength decreases in the order of Ni/NaY>Ni/MaY>Ni/HY. TPSR(Temperature-programmed surface reaction) results indicate that enhanced methanation activity is obtained when the adsorption strength between carbon dioxide and nickel is stroing. As the reduction temperature increases, the methantion activity of the catalyst increase. From this result the larger size nickel particle seems advantageous for $CO_2$ methanation reaction. The maximum activity is obtained when nickel loading is 3.3wt%. Carbon monoxide is produced as a by-product throughout the reaction temperature range, and as the contact time increases, the selectivity to methane increases and the selectivity to carbon monoxide decreases steadily. Thus methane seems to be produced from $CO_2$ via CO as an intermediate species. In the temperature range of $410{\sim}450^{\circ}C$, the methane production rate is found to be dependent on the orders of 3.3~-0.5 and 1.4~3.6 with respect to $CO_2$ and $H_2$ partial pressures, respectively. This clearly shows that $CO_2$ and $H_2$ are competing for adsorption sites and as the reaction temperature increases, it becomes increasingly difficult for $H_2$ to be adsorbed on the catalyst surface.

  • PDF

Reaction of Methanol and Methyl Iodide on ZnO(0001) and ZnO(11-20) Single Crystal Surfaces

  • Doh, Won-Hui;Roy, Probir Chandra;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.214-214
    • /
    • 2011
  • The adsorption and reactions of methanol and methyl iodide on ZnO(0001) and ZnO(11-20) single crystal surfaces have been investigated using the temperature programmed desorption (TPD) technique. The interaction of methanol and methyl iodide with ZnO is stronger on the polar ZnO(0001) surface than the non-polar ZnO(11-20) surface. On ZnO(0001), methanol is decomposed to produce formaldehyde and hydrogen. Two desorption features of formaldehyde and hydrogen are observed at around 500 and 580 K. The interaction of methanol and pre-adsorbed hydrogen has been also investigated. The reaction mechanism of methanol on ZnO will be proposed.

  • PDF

Thermal Decomposition of Octanethiolate Self-Assembled Monolayers on Cu(111) in UHV

  • Sung, Myung-M.;Yun, Won-J.;Lee, Sun-S.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.610-612
    • /
    • 2003
  • Octanethiol ($CH_3(CH_2)_7SH$) based self-assembled monolayer on Cu(111) in ultra-high vacuum has been examined using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), intergrated desorption mass spectrometry (IDMS), and contact angle analysis. The results show that the octanethiolate monolayers similar to those on gold are formed on Cu(111). The monolayers are stable up to temperatures of about 480 K. Above 495 K the monolayers decompose via the γ-hydrogen elimination mechanism to yield 1-octene in the gas phase. The thiolate head groups on the copper surface change to Cu₂S following the decomposition of hydrocarbon fragments in the monolayers at about 605 K.

Propylene Adsorption Characteristics on Copper(Ⅱ)-Exchanged Zeolite Y (구리(Ⅱ)를 이온교환한 제올라이트 Y 에서 프로필렌의 흡착특성)

  • Uh Young Sun;Chon Hakze
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.88-93
    • /
    • 1979
  • The adsorption of propylene on copper(II)-exchanged zeolite Y was studied by temperature programmed desorption (TPD) technique and electron spin resonance. The amount of propylene adsorbed increased with increasing copper ion content. Four TPD peaks with desorption temperature maxima at $108^{\circ}C({\alpha})$, $243^{\circ}C({\beta})$, $284^{\circ}C({\gamma})$ and $420^{\circ}C({\delta})$ were observed (heating rate: $6.4^{\circ}C$/min). ${\alpha}$Peak which was also observed in the TPD of propylene from NaY may be assigned to propylene physically adsorbed on the zeolite surface, ${\beta}$ and ${\gamma}$ peaks to the chemisorbed propylene either on copper ion or Bronsted acid site produced by copper ion, and $\delta$ peak to cracking products from the polymeric material formed from propylene adsorbed.

  • PDF

Properties of Au Clusters Supported on $TiO_2$ Studied by XPS, ISS, AES, and TPD (XPS, ISS, AES, TPD를 이용한 $TiO_2$ 위에 지지된 Au 클러스터의 특성 연구)

  • Kim, Dae Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.607-617
    • /
    • 1998
  • Au was dosed on $TiO_2(001)$ film grown epitaxially on Mo(100) surface in about 90 ${\AA}$ thickness. The growth mode of Au, thermal behavior and stability of the Au clusters, and the binding energy shift of Au 4f with the change in the amount of Au loading were studied by Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) spectroscopy, Ion Scattering Spectroscopy (ISS), and X-ray Photoelectron Spectroscopy (XPS). Au grows three dimensionally on $TiO_2(001)$ film and the average size of Au clusters prepared at low temperature is smaller than those at higher temperature and the size increases with temperature irreversibly. Au clusters on $TiO_2(001)/Mo(100)$ start evaporation at 1000 K. TPD spectra of Au show very asymmetric peaks with the same leading edges irrespective of the amount of Au loading. The temperature at the peak maximum increases with the amount of Au. The desorption energy of Au obtained from the leading edge analysis of the TPD spectra is about 50 kcal/mol. The initial sticking coefficient of Au on $TiO_2(001)$ is constant in the temperature range of 200-600 K. The binding energy of Au 4f for the Au loaded on the film less than 2.0 MLE shifts to higher energy compared with the bulk Au. The shift is +0.3 eV at 0.1 MLE Au amount.

  • PDF

CO Adsorption and Reaction on Clean and Zn-deposited Au(211) surface

  • Jo, Sang-Wan;Mbuga, F.;Ogasawara, H.;Nilsson, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.128.2-128.2
    • /
    • 2013
  • Crucially, effective catalysts must be capable of efficiently catalyzing the protonation of adsorbed CO to adsorbed CHO or COH. One of the strategies is alloying with metals with higher oxygen affinity and Au-Zn alloy is one of the best candidates. At first, we made Au-Zn alloy using vacuum evaporating method. Zn was deposited on the Au(211) surface and the amount was estimated by X-ray photoelectron spectroscopy (XPS) using the relative sensitivity of Au 4f and Zn 3d. We investigated CO adsorption on a clean Au(211) and Au-Zn alloy using temperature-programmed desorption (TPD) and XPS. From the TPD results, we can conclude that the presence of the particular step sites at the Au(211) surface imparts stronger CO bonding and Zn atoms are sitting on the step sites at the Au(211) when Zn is deposited. The XPS results show the oxygen atoms of CO bond Zn atoms on Au-Zn surface. It should be an evidence that alloying Zn atoms that has high oxygen affinity into an electrocatalyst may allow CHO* to bind to the surface through both the carbon and oxygen atoms.

  • PDF