• Title/Summary/Keyword: Temperature programmed-desorption (TPD)

Search Result 79, Processing Time 0.034 seconds

Influence of Amine Surface Treatment on Carbon Dioxide Adsorption Behaviors of Activated Carbon Nanotubes (아민 처리가 탄소나노튜브의 이산화탄소 흡착거동에 미치는 영향)

  • Jang, Dong-Il;Cho, Ki-Sook;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.658-662
    • /
    • 2009
  • In this work, the amine-treated activated carbon nanotubes (A-MWNTs) were used to investigate the $CO_2$ adsorption behaviors. A-MWNTs were prepared by impregnation with amine in methanol after chemical activation methods using a KOH. The characteristics of amine-treated A-MWNTs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, desorption isotherms at 77 K. The specific surface area and pore volume of the A-MWNTs were analyzed by BET equation, BJH method, and t-plot method. $CO_2$ capture capacity as a function of temperature was measured by temperature programmed desorption (TPD). From the results, the amine treatment increased the basicity and nitrogen content of the A-MWNTs. The $CO_2$ adsorption capacity of the amine-nontreated A-MWNTs showed the highest value at room temperature and then greatly decreased with increasing the temperature. However, the amine-treated A-MWNTs presented a softer slope with temperature compared to the amine-nontreated ones. It was due to the strong interactions between $CO_2$ and amino groups presented on the carbon surfaces studied.

Adsorption of Amine and Sulfur Compounds by Iron Phthalocyanine Derivatives (철 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong-Se;Park, Jin-Do;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.575-584
    • /
    • 2007
  • The adsorption capability of iron phthalocyanine derivatives were investigated by means of X-ray diffractometor (XRD), IR (infrared) spectroscopy, scanning electron microscopy (SEM) and temperature programmed desorption (TPD). According to TPD results, iron phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic iron phthalocyanine (Fe-TCPC) have a stronger desorption peak (chemical adsorption) at the high temperature and a weaker desorption peak (physical adsorption) at the low temperature than iron phthalocyanine (Fe-PC). The specific surface areas of Fe-TCPC and Fe-PC were $26.46\;m^2/g\;and\;11.77\;m^2/g$, respectively. The pore volumes of Fe-TCPC and Fe-PC were $0.14\;cm^3/g\;and\;0.06\;cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 220 ppm of equilibrium concentration was 29.2 mmoL/g for Fe-TCPC and 0.8 mmoL/g for Fe-PC. The removal efficiency of dimethyl sulfide of Fe-TCPC and Fe-PC in batch experiment of 225 ppm of initial concentration were 44.9% and 28.9%, respectively. The removal efficiency of trimethyl amine of Fe-TCPC and Fe-PC in batch experiment of 118 ppm of initial concentration were approximately 100.0% and 33.9%, respectively.

The Interaction of Hydrogen Atom with ZnO: A Comparative Study of Two Polar Surfaces

  • Doh, Won-Hui;Roy, Probir Chandra;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.249-249
    • /
    • 2012
  • The interaction of hydrogen with ZnO single crystal surfaces, ZnO(0001) and ZnO(000-1), has been investigated using a temperature programmed desorption (TPD) technique. Both surfaces do not interact with molecular hydrogen. When the ZnO(0001) is exposed to atomic hydrogen at 370 K, hydrogen is adsorbed in the surface and desorption takes place at around 460 K and 700 K. In ZnO(000-1), the desorption peaks are observed at around 440 K and 540 K. In both surfaces, as the atomic hydrogen exposure is further increased, the intensity of the low-temperature peak reaches maximum but the intensity of the high-temperature peak keeps increasing. In ZnO(000-1), the existence of hydrogen bonding to the surface O atoms and the bulk hydrogen has been confirmed by using X-ray photoelectron spectroscopy (XPS). When the Zn(0001) surface is exposed to atomic hydrogen at around 200 K, a new $H_2$ desorption peak has been observed at around 250 K. The intensity of the desorption feature at 250 K is much greater than that of the desorption feature at 460 K. This low-temperature desorption feature indicates hydrogen is bonded to surface Zn atoms. We will report the effect of the ZnO structure on the adsorption and bulk diffusion of hydrogen.

  • PDF

Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports (Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과)

  • Kim, Eun-Jeong;Kang, Dong-Chang;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.121-129
    • /
    • 2017
  • Pd based catalysts were prepared by impregnating palladium precursor using incipient wetness method on $TiO_2$, $Al_2O_3$, $ZrO_2$, and $SiO_2$ and were applied for the selective oxidation of $H_2$ in the presence of CO. Their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$-sorption, temperature programmed desorption of CO (CO-TPD) and (CO+$H_2O$)-TPD, temperature programmed reduction of CO (CO-TPR) and XPS a. The results of CO- and (CO+$H_2O$)-TPD showed the correlation between peak temperature of TPD and catalytic activities for $H_2$ and CO conversion. The $Pd/ZrO_2$ catalyst exhibited the highest conversion of $H_2$. The addition of $H_2O$ vapor promotes the conversion of $H_2$ and CO by inducing easy desorption of CO and $H_2$ in the competitive adsorption of $H_2O$, CO and $H_2$.

The Adsorption and Desorption of $NH_3$ on Rutile $TiO_2(110)-1{\times}1$ Surfaces

  • Kim, Bo-Seong;Li, Zhenjun;Kay, Bruce D.;Dohnalek, Zdenek;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.265-265
    • /
    • 2012
  • The adsorption of molecular $NH_3$ on rutile $TiO_2(110)-1{\times}1$ surfaces was investigated using a temperature-programmed desorption (TPD) technique combined with a molecular beam apparatus. A quantitative investigation into the TPD spectra of $NH_3$ was made for $NH_3$ adsorbed on two kinds of rutile $TiO_2(110)-1{\times}1$ surfaces with the oxygen vacancy ($V_O$) concentration of ~0% (p-$TiO_2(110)$) and ~5% (r-$TiO_2(110)$), respectively. On both surfaces, non-dissociative adsorption of $NH_3$ was inferred from a quantitative analysis on the amount of adsorbed $NH_3$ and those desorbed. With increasing coverage, the monolayer desorption feature shifted from 400 K toward lower temperatures until it saturates at 160 K, suggesting a repulsive nature in the interaction between $NH_3$ molecules. At the very low coverage regime, the desorption features were found to extend up to 430 K and 400 K on p-$TiO_2(110)$ and p-TiO(110), respectively. As a result, the saturation coverage of monolayer of $NH_3$ was higher on the p-$TiO_2(110)$ surface than on the p-TiO(110) by about 10%. The desorption energy ($E_d$) of $NH_3$ obtained by inversion of the Polanyi-Wigner equation indicated that the difference between the $E_d$'s of $NH_3$ (that is, $E_d(on\;p-TiO_2(110)$) - $E_d$(on p-TiO(110)) was 14 kJ/mol at ${\theta}(NH_3)=0$ and decreased to 0 as the coverage approached to a monolayer. The observed adsorption behavior of $NH_3$ was interpreted using an interaction model between $NH_3$ and surface defects on $TiO_2$ such as VO's and $Ti^{3+}$ interstitials.

  • PDF

Does $N_2O$ react over oxygen vacancy on $TiO_2$(110)?

  • Kim, Bo-Seong;Kim, Yu-Gwon;Li, Z.;Dohnalek, Z.;Kay, B.D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.196-196
    • /
    • 2011
  • Molecular $N_2O$ has bee known to react over oxygen vacancy on a reduced rutile $TiO_2$(110)-1${\times}$1 surface to desorb as molecular $N_2$ leaving oxygen atom behind. In the present study, we investigated the reaction of $N_2O$ on rutile $TiO_2$(110) using temperature-programmed desorption (TPD). Our results indicate that $N_2O$ does not react over the oxygen vacancy under a typical UHV experimental condition. On a rutile $TiO_2$(110)-1${\times}$1 with a well-defined oxygen vacancy concentration of 5% ($2.6{\times}10^{13}/cm^2$), $N_2O$ desorption features show a monolayer peak maximum at 135 K followed by a small peak maximum at 170 K. When the oxygen vacancy is blocked with $H_2O$, the $N_2O$ peak at 170 K disappears completely, indicating that the peak is due to molecular $N_2O$ interacting with oxygen vacancy. The integrated amount of desorbed $N_2O$ plotted against the amount of adsorbed $N_2O$ however shows a straight line with no offset indicating no loss of $N_2O$ during our cycles of TPD measurements. In addition, our $N_2O$ uptake measurements at 70~100 K showed no $N_2$ (as a reaction product) desorption except contaminant $N_2$. Also, $H_2O$ TPD taken after $N_2O$ scattering up to 350 K indicates no change in the vacancy-related $H_2O$ desorption peak at 500 K showing no change in the oxygen vacancy concentration after the interaction with $N_2O$.

  • PDF

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide (바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성)

  • Yun, Kyung Hee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.620-629
    • /
    • 2022
  • By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340 ℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680 ℃, the cubic lattice constant a was VN. close to the value. At 680 ℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

Preparation and Characterization of Al-Zr Mixed Oxide Catalysts (Al-Zr 혼합산화물 촉매의 제조 및 특성분석)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • xAl-yZr mixed oxide catalysts with different molar ratios of Al/(Al+Zr) were prepared by a co-precipitation method and its catalytic performance was compared in the iso-propanol dehydration as a model reaction. The catalysts were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), N2 adsorprion-desorption, NH3 temperature programmed desorption (NH3-TPD), and iso-propanol TPD analyses. The addition of Al into ZrO2 promoted the formation of relatively small particles with large surface areas and retarded the transformation of teragonal phase to monoclnic phase. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of Al molar ratio. The catalytic activity for the dehydration of iso-propanol to propylene was also increased with the same tendency. The catalytic activity could be correlated with high surface area, acidity and easy desorption of iso-propanol.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

$D_2$ Adsorption on Ti-deposited Metal Organic Frames

  • Sa, Gong-Gil;Lee, Ji-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.312-312
    • /
    • 2011
  • 초고진공 장치 내에서 질량분석기와 티타늄 증착기를 이용하여 IRMOF-3에 증착된 티타늄과 수소 간의 흡착 특성을 TPD (Temperature Programmed Desorption)을 통하여 연구하였다. 티타늄을 흡착시키지 않은 순수한 IRMOF-3에 35K에서 주입한 중수소에 대한 TPD 데이터에서는 중수소가 저온 장치에 물리흡착된 약 50K에서의 작은 피크 이외에는 다른 흡착 특성을 보이지 않는다. 하지만 티타늄 2ML (Monolayer)를 흡착 시킨 IRMOF-3의 TPD 데이터에서는 약 60K와 95K에서의 두 피크가 보인다. 이는 분산된 티타늄과 중수소 사이에는 0.16eV와 0.25eV의 결합에너지를 가지는 두 가지의 다른 결합이 있다는 사실을 보여준다. 그리고 40K~110K에서 수소와 HD는 나오지 않고, 중수소만 나온 점은 주입한 중수소가 IRMOF-3에 분산된 티타늄에 쿠바스 상호작용에 의하여 분자상태로 화학 흡착되어 있을 것이라는 증거가 된다.

  • PDF