• 제목/요약/키워드: Temperature prediction model

검색결과 1,374건 처리시간 0.029초

열간 압연 중 판의 온도 분포 모델 개발 (An analytical model for the prediction of strip temperatures in hot strip rolling)

  • 김재부;이중형;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 제7회 압연 심포지엄
    • /
    • pp.97-102
    • /
    • 2009
  • In hot strip rolling, sound prediction of the temperature of the strip is vital for achieving the desired finishing mill draft temperature (FDT). In this paper, a precision on-line model for the prediction of temperature distributions along the thickness of the strip in the finishing mill is presented. The model consists of an analytic model for the prediction of temperature distributions in the inter-stand zone, and a semi-analytic model for the prediction of temperature distributions in the bite zone in which thermal boundary conditions as well as heat generation due to deformation are predicted by finite element-based, approximate models. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(II) -예측 모델식을 중심으로- (Effect of Curing Temperature and Aging on the Mechanical Properties of Concrete (II) -Evaluation of Prediction Models-)

  • 한상훈;김진근;양은익
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.35-42
    • /
    • 2000
  • In paper I, the relationships between compressive strength and splitting tensile strength or modulus of elasticity were proposed. In this paper, new prediction model is investigated from estimating splitting tensile strength and modulus of elasticity with curing temperature and aging without compressive strength. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values of paper I. To evaluate in-situ applicability of the model, strength and modulus of elasticity tested with variable temperatures are estimated by the prediction model. The prediction model reasonably estimates the strength and the modulus of elasticity of type I and V cement concretes tested in paper I and experimental results with variable temperature tested in this paper.

열연 조압연공정에 있어서의 평균온도 예측모델 개발 (Development of Prediction Model for Average Temperature in the Roughing Mill)

  • 문창호;박해두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.368-377
    • /
    • 2004
  • A mathematical model was developed for the prediction of the average temperature and RDT(RM Delivery temperature) in a roughing mill. The model consisted of three parts as follows (1) The intermediate numerical model calculated the deformation and heat transfer phenomena in the rolling: region by steady state FEM and the heat transfer phenomena in the interpass region by unsteady state FEM (2) The Off-line prediction model was derived from non-linear regression analysis based on the results of intermediate numerical model considering the various rolling conditions, (3) Using the heat flux in rolling region, temperature profile along thickness direction was calculated. For validation of the presented model, the rolling force per pass and RDT measued in on-line process was compared with those of model and the results showed close agreement with the existing data. In order to demonstrate the effectiveness of the proposed model, the various rolling conditions was tested.

  • PDF

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

후판 압연의 온라인 온도예측 모델 개발 (Development of On-line Temperature Prediction Model for Plate Rolling)

  • 서인식;이창선;조세돈;주웅용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.283-292
    • /
    • 1999
  • Temperature prediction model was developed for on-line application to plate rolling mills of POSCO. The adequate boundary conditions of heat transfer coefficients were obtained by comparing the predicted temperature with the measured temperatures taken by measuring system in plate rolling mill of POSCO. In obtaining the boundary condition which minimize the mean and standard deviation of the difference between prediction and measurement, orthogonal array for experimental design was used to reduce the calculation time of large data set. To predict the temperature drop at four edge of plate in one dimensional model, the energy change by heat transfer though directions perpendicular to thickness direction was treated like that by deformation. And the heat transfer through four edge directions was inferred from that through thickness direction with two coefficients of depth and severity of temperature drop at the edge. The boundary condition for the depth and severity of temperature drop were also determined using the measured temperature.

  • PDF

교통개방을 위한 에폭시 아스팔트 콘크리트의 강도 예측모델 개발 (A Development of Strength Prediction Model of Epoxy Asphalt Concrete for Traffic Opening)

  • 백유진;조신행;박창우;김낙석
    • 대한토목학회논문집
    • /
    • 제32권6D호
    • /
    • pp.599-605
    • /
    • 2012
  • 교통개방시점의 예측은 공사 계획을 위해 중요하며 이를 위해 에폭시 아스팔트 혼합물의 양생에 따른 강도를 예측하는 것이 필요하다. 본 연구에서는 에폭시 아스팔트 혼합물의 양생온도와 시간에 따른 마샬안정도를 측정하고 이를 이용해 강도 발현식을 구하였으며, 변화하는 온도와 강도에 따른 반응속도를 반영할 수 있도록 화학적 반응속도론을 이용하여 에폭시 아스팔트 강도 예측모델을 개발하였다. 예측모델을 사용하여 에폭시 아스팔트 포장이 적용된 국내 교량에 대해 교통개방시기를 예측하였다. 2009년~2011년의 기상조건에 따라 가정된 포장체 온도를 사용한 예측결과는 실제 교통개방일과 17일의 차이가 발생했으나 이는 2012년의 실제 기상상태와의 차이 때문이다. 실제 측정된 포장 온도를 예측모델에 대입할 경우 2일의 교통개방가능일 차이가 있었으며, 상관관계 분석 결과 R2가 0.95로 실제 강도값과 매우 유사한 결과를 얻을 수 있었다. 기상상태와 포장체의 온도에 대한 충분한 데이터를 확보한다면 에폭시 아스팔트 강도 예측모델을 사용하여 상당히 신뢰도 있는 교통개방 가능 시기의 예측이 가능한 것으로 나타났다.

한반도 겨울철 기온의 월별 통계 예측 모형 구축 및 검증 (Development and Evaluation of Statistical Prediction Model of Monthly-Mean Winter Surface Air Temperature in Korea)

  • 한보름;임유나;김혜진;손석우
    • 대기
    • /
    • 제28권2호
    • /
    • pp.153-162
    • /
    • 2018
  • The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering $El-Ni{\tilde{n}}o$ Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository

  • Gi-Jun Lee;Seok Yoon;Bong-Ju Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.225-234
    • /
    • 2023
  • In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100℃. However, they cannot be applied to temperatures above 100℃. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100℃ and 125℃, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.

적산온도 기법을 활용한 건설생산현장에서의 강도예측모델 개발에 관한 연구 (A Study on Development of Strength Prediction Model for Construction Field by Maturity Method)

  • 김무한;남재현;길배수;최세진;장종호;강용식
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.177-182
    • /
    • 2002
  • The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.

A study of predicting irradiation-induced transition temperature shift for RPV steels with XGBoost modeling

  • Xu, Chaoliang;Liu, Xiangbing;Wang, Hongke;Li, Yuanfei;Jia, Wenqing;Qian, Wangjie;Quan, Qiwei;Zhang, Huajian;Xue, Fei
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2610-2615
    • /
    • 2021
  • The prediction of irradiation-induced transition temperature shift for RPV steels is an important method for long term operation of nuclear power plant. Based on the irradiation embrittlement data, an irradiation-induced transition temperature shift prediction model is developed with machine learning method XGBoost. Then the residual, standard deviation and predicted value vs. measured value analysis are conducted to analyze the accuracy of this model. At last, Cu content threshold and saturation values analysis, temperature dependence, Ni/Cu dependence and flux effect are given to verify the reliability. Those results show that the prediction model developed with XGBoost has high accuracy for predicting the irradiation embrittlement trend of RPV steel. The prediction results are consistent with the current understanding of RPV embrittlement mechanism.