• Title/Summary/Keyword: Temperature on the ceiling

Search Result 134, Processing Time 0.025 seconds

A Study on the Evaluation of Thermal Environment according to the Location of Ceiling Type Unit in Classroom (교실 천장형 Unit의 위치에 따른 온열환경 평가 연구)

  • Cho, Sung-Woo;Choi, Jeong-Min;Son, Young-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.135-140
    • /
    • 2005
  • Installation of ceiling type unit is achieved by one of efforts for agreeable classroom environment embodiment along with economic growth. But research about changing the position of ceiling type unit is lacking in present. Therefore, this thesis is to study the thermal environment of 5 different position cases of ceiling type, namely Case A, B, C, D, E. Here, Case C is the case that has the position of ceiling type center of the classroom and the other 4 alternatives are 0.7 m away from the Case C according to x and z axis. In this thesis temperature distributions, air current distribution, heat amenities such as PMV of occupants are analyzed as the environmental factors. Through these factors, Case C and Case D are the better position alternatives than the alternatives of Case A, Case B and Case E because the latter cases the air current reaches directly to indoor occupants so that occupants feel chilly. This thesis has a conclusion under the condition of only one inlet air temperature and seat arrangement. But afterwards more inlet air condition and seat arrangement must be considered.

  • PDF

Installed Spacing and Reponse Time Index of Heat Detection Devices (열감지장치의 응답시간지수와 경계구역)

  • 권오승;이복영;김동석
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.72-75
    • /
    • 1996
  • The objectives of this paper investigate the effect of installed spacing on the activation of spot type heat detection devices. The flow of hot gases under a ceiling resulting from the impingement of a fire plume activates heat detectors and sprinklers. Local temperature and velocity in this ceiling jet are usually expressed with the function of a ceiling height, the distance from a fire location and the heat release rate of fire. And detectors having different. RTI respond in different ways to the same temperature and velocity of ceiling jet. Thus great care should be taken to decide installed spacing of heat detection devices by considering above effects.

  • PDF

The Experiment on The Efficiency of Heating System for Improving Farm Houses (농촌주택 개량을 위한 난방 효율 시험)

  • 이회만;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3395-3409
    • /
    • 1974
  • The purpose of this study is to test and compare the efficiency of heating-system for materials and construction of the wall, ceiling and window in soil brick house, cement house and boulder house respectively, in order to construct ideal farm houses in rural area. The results obtained were as follows: 1. In heat conservation due to construction of walls the thermal efficiency of cement brick house was equivalent to 66.3% of that of soil brick house, and boulder house 60.3% 2. In the case of ceiling, the thermal efficiency of paper ceiling was amounted to 84.2% of that of the composite ceiling (thickness 6mm veneer+thickness. l0m chaffs), and the common ceiling putting on soil above the ceiling, 76% of the composite while the efficiency of the ceiling putting on chaffs above them was 15.8% higher than that of the paper. 3. In the case of improving the window, the double type was 12% higher than. the efficiency of single type. 4. The warming velocity of conventional house was slower but the velocity of radiation was quicker than that of experimental one. It was thought to be due to unscietific constructions of the room bottom, fire inlet and chimney, 5. The temperature gradient line was not dependad upon the amount of throwing into fuel in the rural farm house. 6. It was concluded that the final thermal efficiency of the conventional farm house was 10.6% lower than that of experimental farm house.

  • PDF

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

Computer Simulation on the Thermal Environment by the Diffusion temperature and Diffusion Angle of Ceiling Type Air Conditioner in Classroom (교실에서의 천장형 냉난방기의 취출온도 및 취출각도에 따른 열환경 시뮬레이션)

  • Park, Hyo-Soon;Park, Seung-Ik;Lee, Sang-Hyeok;Lee, Kam-Gyu
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.4 no.4
    • /
    • pp.1-18
    • /
    • 2004
  • Research has been carried out to study thermal environment in a classroom under three kinds of air diffusion temperature and six kinds of air diffusion direction for ceiling type air conditioner. The velocity and temperature distributions of air in the room calculated by 3-dimensional numerical method(PHOENICS), This present study was also conducted to calculate the Air Diffusion Performance Index(ADPI) for cooling conditions and Predicted Percentage of Dissatisfied(PPD) for heating conditions. This analysis shows that the optimum angle of ceiling type air conditioner's diffusion is $15{\sim}30^{\circ}$ for cooling mode and about $15{\sim}45^{\circ}$ for heating mode in these calculating conditions. And also analysis has been carried out to evaluate thermal comfort of vertical and horizontal cross section of classroom.

  • PDF

Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems (사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험)

  • Cho, Yong;Kwon, Hyurk-Seung;Kim, Sung-Hyun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF

Thermal Design of a MR16 LED Light with the Effects of Ceiling Unit Mount (실링 유닛 장착효과를 고려한 MR16 LED 조명등 방열설계)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3141-3147
    • /
    • 2010
  • The most important cause for shortening LED lighting efficiency and life is the junction temperature rises and, to solve this problem, various studies such as thermally efficient packaging, highly conductive material development, contact resistance improvement or heat sink optimization have been studied. However, most studies so far assumed that the LED lights are in the atmosphere, and thermal performance has not been therefore reported when the LED lights are mounted on the ceiling with ceiling unit. Thus, this study investigates the variation of junction temperature of the MR16 LED light under actual installation conditions and more accurate thermal design for the efficiency and life of LED lights is therefore achieved.

An Experimental Study on the Capability of Arresting the Spread of a Fire of Fireproof Fabric Equipped over Ceiling Board of Wooden Cultural Properties (목조문화재 개판 상부에 설치하는 방염천의 화재전파 차단기능에 대한 실험연구)

  • Kim, Hyunju;Roh, Sam-Kew;Kim, Dong Cheol;Ham, Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.297-303
    • /
    • 2012
  • This study examines the isolation-heat performance of fire proof fabric that is equipped over ceiling board in order to secure the capability of arresting the spread of a fire at roof 'Jucsim' structure of Wooden Cultural Properties. For this examination, I conduct experiments with the model and compare two construction methods of fire proof fabric, or flat-type, folding-type. The experiments show the following results. In case of installing the fire proof fabric in flat-type, when the temperature under the ceiling board is $750^{\circ}C$, the temperatures over the ceiling board is $50^{\circ}C$; the difference is $700^{\circ}C$. Compared with the case of removing fire proof fabric, the temperature over the ceiling board is lower by approximately $580^{\circ}C{\sim}600^{\circ}C$. Therefore it can be said that the construction of fire proof fabric enhances the isolation-heat performance. In case of installing the fire proof fabric in folding-type, when the temperature under the ceiling board is $600^{\circ}C$, the temperatures over the ceiling board is $65^{\circ}C$; the difference is approximately $530^{\circ}C$. Thus its isolation-heat performance is a little inferior to the flat-type equipment.

A STUDY ON LAMP BANK DESIGN OF SOLAR SIMULATOR (솔라시뮬레이터의 램프뱅크 설계에 관한 연구)

  • Baek, S.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.45-52
    • /
    • 2012
  • This paper is a study on the design of the solar lamp bank which is a very important part of the solar simulator with the commercial metal halide lamps and infrared lamps. Lamp Bank is designed by the lamp bank design program based on point light source theory. The reliability of the program for lamp bank design is verified through irradiance variation experiments of a kind of lamp according to horizontal distance. Solar lamp bank facilitates heat distribution and satisfies the irradiance in the three wave length which test guidelines require. The shape of the ceiling board next to the lamp bank to promote the lamp cooling efficiency and to reduce temperature deviation and air velocity deviation in the chamber is so creative. The ceiling board of partial closed type is the best among several types.

A Study on the Process Optimization of Microcellular Foaming Injection Molded Ceiling Air-Conditioner 4-Way Panel (초미세발포 사출성형을 이용한 천정형 에어컨 4-way 판넬의 공정 최적화에 관한 연구)

  • Kim, Joo-Kwon;Lee, Jung-Hee;Kim, Jong-Sun;Lee, Jun-Han;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.98-104
    • /
    • 2018
  • Deflected 4-way panels of ceiling air conditioners produced by injection molding process have caused dew condensation at the edge of products. In order to prevent this drawback with reducing weight and deformation, this study proposed renovated process adopting microcellular foaming. According to results from 2-sample t-test and analysis of variance(ANOVA), the critical factors affecting weight were melt temperature and injection speed. In addition, the vital effects on deformation were structure at the edge, mold temperature and cooling time. Optimal conditions of these parameters were derived by regressive analysis with CAE and response surface method(RSM), and then applied to an actual design and process stage to analyze performance. As a results, it clearly showed that new process improved process capability as well as reduced both weight and deformation by 18.8% and 71.9% respectively compared to the conventional method.