• Title/Summary/Keyword: Temperature of aggregate

Search Result 361, Processing Time 0.027 seconds

Strain Properties of Concrete with Aggregate and Loading Condition (골재종류 및 하중재하 조건에 따른 콘크리트의 변형특성)

  • Lee, Tae-Gyu;Kim, Gyu-Yong;Kim, Young-Sun;Lee, Eui-Bae;Nam, Jeong-Soo;Didolkar, Rahul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.229-230
    • /
    • 2010
  • By using the experiment, it can analyze strain properties of that when the concrete using light and nomal-weight aggregate takes a various under-loading level at elevated temperature.

  • PDF

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete (잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park, Do-kyong;Yoon, Yer-Wan;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

The Analysis of Indirect Tensile Strength (ITS) Characteristic using Physical Properties of Asphalt Mixtures (아스팔트 혼합물의 물리적 특성을 이용한 간접인장강도의 특성 분석)

  • Lee, Moon Sup
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • PURPOSES : This study was performed to evaluate the possibility of Indirect Tensile Strength (ITS) as a testing method that can predict cracking on pavement. METHODS : Three asphalt binders and one kind of aggregate were used in this study, and all asphalt mixtures were produced using Gyratory Compactor followed asphalt mix design. The ITS test was performed for the mixture which are artificially short-term aged using the oven. The ITS properties were analyzed by air void, compaction temperature, asphalt content, and asphalt binder. RESULTS : The results of this study indicated that (1) the compaction temperature did not show relationship with the ITS test; (2) there was no specific trend between the asphalt content and the ITS test; (3) the ITS could reveal the property of kinds of asphalt binders; (4) the asphalt mixture that were produced at optimum temperature suggested by manufacturer did not exhibit optimum result for all asphalt binder. CONCLUSIONS : The possibility of ITS was confirmed from this study for replacement of the Marshall Stability method. However, it needs to perform in further studies of aggregate and compaction property to suggest a new ITS standard value.

Strength degeneracy of LWAC and flexural behavior of LWAC members after fire

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • The characteristics of lightweight aggregate (LWA) with a low specific gravity and high water absorption will significantly change the properties of lightweight aggregate concrete (LWAC). This study aimed at exploring the effect of presoaking degree of LWA on the strength degeneracy of LWAC and flexural behavior of LWAC members exposed to elevated temperatures. The residual mechanical properties of the LWAC subjected to elevated temperatures were first conducted. Then, the residual load tests of LWAC members (beams and slabs) after exposure to elevated temperatures were carried out. The test results showed that with increasing temperature, the decreasing trend of elastic modulus for LWAC was considerably more serious than the compressive strength. Besides, the presoaking degree of LWA had a significant influence on the residual compressive strength and elastic modulus for LWAC after exposure to $800^{\circ}C$. Moreover, owing to different types of heating, the residual load bearing capacity of the slab specimens were significantly different from those of the beam specimens.

Strength properties of Polymer-modified Sandwich panel core using non-structural lightweight Aggregate (비구조용 경량 골재를 충진재로 활용한 폴리머 개질 샌드위치 패널 심재의 강도 특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.775-780
    • /
    • 2002
  • Sandwich panel made by foamed styrene and ployuretane has been used generally in the construction area because of the high thermal conductivity and light weight but they occur harmful gases to both bodies and environments in the high temperature over $50^{\circ}C$. So, the purpose of this study is to investigate the physical properties of light-weight panel using the non-structural lightweight aggregate as a part of the substitution of foamed styrene and ployuretane. This paper dealt with the effect of the addition of polymer dispersion such as SBR, St/BA-1 and St/BA-2 having polymer-cement ratio as 5, 10, 15% and the filling ratio of continuous void as 50, 60% on the strength of polymer-modified sandwich panel core. From the results, we could know that the compressive and flexural strength of the sandwich panel core using non-structural lightweight aggregate and polymer dispersion such as SBR, St/BA-1 and St/BA-2 tended to be increased with an increase in the polymer-cement ratio and the filling ratio of continuous void.

  • PDF

A Study on the Effect of Experimental Factors for the Durability Inspection of High Strength Concrete (고강도콘크리트의 내구성진단을 위한 영향인자 파악을 위한 연구)

  • Kwon, Young-Jin;Kim, Moo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • The effect of experimental factors on the Freeze-Thaw durability in the High Strength Concrete has been analyzed and investigated with [DESIGN of EXPERIMENT: L16). The Experimental parameters included the type of aggregate and mixer, the conditions of aggregates, and the difference of mixing temperature, procedure and placing, etc. It is aim of this study to provide the fundamental data on the effect of various factors on the frost resistance of high strength concrete for the practical use and research data accumulation of durability inspection. The results of this experiment indicate that the freeze-thaw durability of high strength concrete is markedly affected by the coarse aggregate source, mixing temperature and curing conditions.

  • PDF

Effects of waste glass aggregate on thermal behavior of fly ash alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Eu, Ha Min;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.115-116
    • /
    • 2022
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in fly ash (FA) based alkali activated mortar (AAm). AAms were heated at elevated temperature of 200℃, 400℃, 600℃, and 800℃ to explore the residual mass, compressive strength, thermal expansion and change in microstructure of matrix. Results showed greater resistance of AAms with increasing GS content to 50% at each temperature. Owing to the melting of GS at 800℃, the greater matrix bond was observed for AAm incorporating 75% and 100% GS as a result, the residual compressive strength was increased.

  • PDF

Compressive stress-strain behavior of RFAC after high temperature

  • Liang, Jiongfeng;Wang, Liuhaoxiang;Ling, Zhibin;Li, Wei;Yang, Wenrui
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • This paper discusses the effect of high temperatures (Ts) on the compressive strength and stress-strain curve of recycled fine aggregate concrete (RFAC), based on the experimental results. A total of 90 prisms (100 mm×100 mm×300 mm) were tested. The results show that the compressive strength and elastic modulus of RFAC specimens decreased significantly with increasing T values. As T increased, the strain corresponding to peak stress decreased first when T<200℃ and then increased afterwards. With increasing T values, the stress-strain curves became flat gradually, the peak stress dropped gradually, and εp decreased when T<200℃ and increased in the T range of 400-800℃. A stress-strain relations for RFAC exposed to high Ts is proposed, which agree quite well with the test results and may be used to practical applications.