• Title/Summary/Keyword: Temperature low dependent

Search Result 551, Processing Time 0.029 seconds

A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methodes (화학적방법과 방사선으로 가교된 저밀도 폴리에티렌의 열적 기계적 및 유전적 특성의 비교연구)

  • 김봉흡;강도열;김정수
    • 전기의세계
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 1976
  • A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca.20.deg.C to 320.deg.C and a frequency range of KHZ to MHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking, however, melting and liquidizing temperatures attain rapid increase at the imitiation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation.

  • PDF

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

Temperature dependent characteristics of HVTFT for ferroelectric display (강유전체 표시기용 고전압 비정질 실리콘 박막트렌지서트의 온도변화 특성)

  • 이우선;김남오;이경섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.558-563
    • /
    • 1996
  • We fabricated high voltage hydrogenerated amorphous silicon thin film transistors (a Si:H HVTFT) and investigated its temperature dependent characteristics of from 303 K to 363 K. The results show that the drain current was decreased at low gate voltage and increased at high gate voltage exponentially. According to the increasing the thickness of a Si layer, drain current increased. Difference of drain current at 363 K was increasd at the lower gate voltage and decreased at the higher gate voltage. When the drain and gate voltage of 100 V applied, the drain current increased linearly with rise temperature.

  • PDF

Impedance spectrosocpy depending on temperature in Organic Light-Emitting Diodes (온도에 따른 유기발광소자의 임피던스 분석)

  • Ahn, Joon-Ho;Chung, Dong-Hoe;Jang, Kyung-Uk;Song, Min-Jong;Lee, Sung-Il;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.543-546
    • /
    • 2004
  • Bias and frequency-dependent impedance is a technique for the investigation of complex conductivity. At low frequency, complex impedance is dominated by resistive component, and at high frequency by capacitive component. We are going to present the results of the bias and frequency-dependent complex impedance in the device structure of $ITO/Alq_3/Al$ in the temperature range between 10K and 300k. And we will show to change radius of Cole-Cole plot. It will be decrease resistance by temperature. Also equivalent electrical circuit and dielectric relaxation can be accomplished by using the complex impedance analysis.

  • PDF

A study on temperature dependent acoustic receiving characteristics of underwater acoustic sensors (수중음향센서 수온 변화에 따른 음향 수신 특성 변화 연구)

  • Je, Yub;Cho, Yohan;Kim, Kyungseop;Kim, Yong-Woon;Park, Saeyong;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.214-221
    • /
    • 2019
  • In this paper, a temperature dependent acoustic receiving characteristics of underwater acoustic sensor is studied by theoretical and experimental investigations. Two different types (low mid frequency sensor and high frequency sensor) of underwater acoustic sensors are designed with different configuration of baffle and conditioning plate. The temperature dependent characteristics of the acoustic sensors are investigated within the temperature range from $-2^{\circ}C$ to $35^{\circ}C$. The material properties of the piezoelectric ceramics, molding and baffle, which are the primary materials of the acoustic sensors, are measured with temperature change. The temperature dependent RVS (Receiving Voltage Sensitivity) characteristics of the acoustic sensors are simulated by using the measured material properties. The RVS changes of the acoustic sensors are measured by changing temperature in the watertank where the acoustic sensors are installed. The measured and the simulated data show that the temperature dependent characteristics of the acoustic sensors are mainly dependent for the sound speed changes of the molding material.

Low-Temperature Deposition of Ga-Doped ZnO Films for Transparent Electrodes by Pulsed DC Magnetron Sputtering

  • Cheon, Dongkeun;Ahn, Kyung-Jun;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • To establish low-temperature process conditions, process-property correlation has been investigated for Ga-doped ZnO (GZO) thin films deposited by pulsed DC magnetron sputtering. Thickness of GZO films and deposition temperature were varied from 50 to 500 nm and from room temperature to $250^{\circ}C$, respectively. Electrical properties of the GZO films initially improved with increase of temperature to $150^{\circ}C$, but deteriorated subsequently with further increase of the temperature. At lower temperatures, the electrical properties improved with increasing thickness; however, at higher temperatures, increasing thickness resulted in deteriorated electrical properties. Such changes in electrical properties were correlated to the microstructural evolution, which is dependent on the deposition temperature and the film thickness. While the GZO films had c-axis preferred orientation due to preferred nucleation, structural disordering with increasing deposition temperature and film thickness promoted grain growth with a-axis orientation. Consequently, it was possible to obtain a good electrical property at relatively low deposition temperature with small thickness.

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

Mesoscale modeling of the temperature-dependent viscoelastic behavior of a Bitumen-Bound Gravels

  • Sow, Libasse;Bernard, Fabrice;Kamali-Bernard, Siham;Kebe, Cheikh Mouhamed Fadel
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.509-524
    • /
    • 2018
  • A hierarchical multi-scale modeling strategy devoted to the study of a Bitumen-Bound Gravel (BBG) is presented in this paper. More precisely, the paper investigates the temperature-dependent linear viscoelastic of the material when submitted to low deformations levels and moderate number of cycles. In such a hierarchical approach, 3D digital Representative Elementary Volumes are built and the outcomes at a scale (here, the sub-mesoscale) are used as input data at the next higher scale (here, the mesoscale). The viscoelastic behavior of the bituminous phases at each scale is taken into account by means of a generalized Maxwell model: the bulk part of the behavior is separated from the deviatoric one and bulk and shear moduli are expanded into Prony series. Furthermore, the viscoelastic phases are considered to be thermorheologically simple: time and temperature are not independent. This behavior is reproduced by the Williams-Landel-Ferry law. By means of the FE simulations of stress relaxation tests, the parameters of the various features of this temperature-dependent viscoelastic behavior are identified.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body (차체용 강판의 온도에 따른 변형률 속도 민감도 연구)

  • Lee H. J.;Song J. H.;Cho S. S.;Kim S. B.;Huh H.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF