• Title/Summary/Keyword: Temperature laps rate

Search Result 2, Processing Time 0.016 seconds

Changes of Rutin Content and Photosynthesis Rate of Korean Buckwheat Cultivars under Various Environmental Stresses

  • Yoon, Byeong-Sung;Kwun, Hyok-Oun;Shin, Sang-Eun;Jin, Cheng-Wu;Yu, Chang-Yeon;Cho, Dong-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2003
  • This study was conducted to classify photosynthesis rate and changes of rutin content of Korean buckwheat (cv. Chunchon-jaerae and Yangjeul-memil) treated with salinity, UV-C and low temperature. In case of cv. Chunchon-jaerae and Yangjeul-memil, according to the salt stress, transpiration rate, stomatal conductance and photosynthesis rate were decreased. Both cultivars also showed decrease of transpiration rate and photosynthesis rate under the UV-C. Rutin contents within leaf and stem of cv. Yangjeul-memil were decreased when NaCl concentration was high. Rutin contents within leaf and stem of cv. Yangjeul-memil were generally decreased when the time laps under the UV-C stress. Rutin contents within leaf and stem of cv. Chunchon-jaerae was also generally decreased when the time laps under the low temperature stress.

Characteristics of Springtime Temperature Within Mt. Youngmun Valley (용문산 산악지역의 봄철 기온특성)

  • Chun, Ji Min;Kim, Kyu Rang;Lee, Seon-Yong;Kang, Wee Soo;Choi, Jong Mun;Hong, Soon Sung;Park, Jong-Seon;Park, Eun-U;Kim, Yong Sam;Choi, Young-Jean;Jung, Hyun-Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2014
  • This paper reviews the results of recent observations in the Yeonsuri valley of Mt. Youngmun during springtime (March to May) in 2012. Automated weather stations were installed at twelve sites in the valley to measure temperature and 2, 3 dimensional wind. We examined temporal and spatial characteristics of temperatures and wind data. The Yeonsuri valley springtime average temperature lapse rate between the top and bottom of the entire period is $-0.44^{\circ}C/100$ m. It can be changed by the synoptic weather conditions, the lapse rates is greatest in order of clear days ($-0.48^{\circ}C/100$ m), rainy ($-0.41^{\circ}C/100$ m) and cloudy days ($-0.40^{\circ}C/100$ m). In the night, the temperature inversion layer (thermal belt) and the cold pool are formed within the valley. In addition, we measured temperature and wind distribution from the bottom to 3.5 m, the cold layers existed up to 1.5 m, which were affected by ground mixed layer. The results will provide useful guidance on agricultural practices as well as model simulations.