• 제목/요약/키워드: Temperature growth chamber

Search Result 223, Processing Time 0.028 seconds

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.

High Performance of Temperature Gradient Chamber Newly Built for Studying Global Warming Effect on a Plant Population

  • Lee, Jae-Seok;Tetsuyuki Usami;Takehisa Oikawa;Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.23 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • To study the effect of global warming on the growth of plants and plant populations throughout their life cycle under a field-like condition, we constructed a Temperature Gradient Chamber (TGC) in Tsukuba, Japan. The chamber had slender shape : 30 m long. 3 m wide, and 2.5 m high. That satisfactory performance was confirmed by a test throughout all seasons in 1998: the projected global warming condition in the near future was simulated. That is, independent of a great daily or seasonal change in ambient meteorological conditions, air temperatures at the air outlet were warmed 5$^{\circ}C$ higher than those at the ambient (the annual mean was 14.3$^{\circ}C$) with precision of ${\pm}$0.2$^{\circ}C$ (the annual means were 19.2$^{\circ}C$) with a rising rate of approximately 1$^{\circ}C$ every 5 m. This chamber will enable us to study the effects of global warming on growth of plants and plant populations because their abilities to control air temperature are excellent. TGC is expected that it would be utilized for studying the effect of global warming on plant growth under natural weather conditions.

  • PDF

Effect of Transfer Date to a Growth Chamber and Low Temperature on Growth and Flowering of Jeffersonia dubia Benth. (입실시기와 저온처리가 깽깽이풀의 생장과 개화에 미치는 영향)

  • Jeong, Jeong Hag
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.266-270
    • /
    • 2009
  • This experiment was conducted to investigate the effect of transfer date to a growth chamber and low temperature on growth and flowering of Jeffersonia dubia for free control of flowering period. According to transfer date, any plant did not sprout when plants were put in a growth chamber from Aug. 20 to Dec. 20. However, all the plants which were put in a growth chamber on Jan. 20 or Feb. 20 sprouted and resulted in flowering. The effect of beginning time and period of low temperature treatment were also observed. At the beginning time of Aug. 20, sprouting and flowering occurred as plant received more than 60 days of low temperature treatment. However, almost of al l the plants sprouted and flowered by only 30 days of low temperature treatment when the low temperature was given after Sep. 20. 60 days of low temperature given again after about three month growing period after dormancy breaking, resulted in resprouting of all plants and 70% of them flowered in this experiment.

Artocarpus chaplasha: Establishment and Initial Growth Performance at Elevated Temperature and Saline Stresses

  • Rahman, Md. Siddiqur;Al-Amin, M.;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • Like any other natural resources, forest flora may experience the extreme threat of elevated temperature and saline water submergence at different stages of their lives i.e. from germination to maturity due to climate change effects. The overall aim of the study was to measure the effect of higher temperatures along with saline water irrigation on survival and initial growth during seedling stage of Artocarpus chapalasha. The experiment was conducted in temperature- humidity-photoperiod regulated plant growth chamber during stipulated period to measure the growth performance of randomly selected seedlings. Within three different elevated temperatures viz. $30^{\circ}C$, $32^{\circ}C$ and $34^{\circ}C$, the seedlings were given three different saline conditions such as 0.5 g/L, 1.5 g/L and 2.5 g/L NaCl concentrations. Results found from the experiment was that, seedlings of Artocarpus chaplasha reared at different temperatures and saline water treatments showed stunted growth than reared at existing outdoor temperature ($26.31^{\circ}C$) irrigated with regular fresh water. Seedling growth at three different parameters such as height, collar diameter and number of leaves showed that with increasing temperature individuals respond negatively to increasing saline condition. The seedling's growth occurred at every day in height, collar diameter and leaf. However, growth rate reduced later during the observation. The combined effect of high salinity and higher elevated temperature results in seedling mortality. Therefore, Artocarpus chaplasha may not thrive at higher temperature and salinity intrusion at its early growing period in plantation and natural forest areas.

Yield Response of Soybean [Glycine max (L.) Merrill] to High Temperature Condition in a Temperature Gradient Chamber

  • Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • Recently, abnormal weather conditions, such as extreme high temperatures and droughts, have increased in frequency due to climate change, there has accordingly been growing concern regarding the detrimental effects on field crop, including soybean. Therefore, this study was conducted to examine the effects of increased temperatures on soybean growth and yield using a temperature gradient chamber (TGC). Two major types of soybean cultivar, a medium- seed cultivar such as Daepung-2 and a large-seed cultivar such as Daechan, were used and four temperature treatments, aT+1℃ (ambient temperature+1℃), aT+2℃ (ambient temperature+2℃), aT+3℃ (ambient temperature+3℃) and aT+4℃ (ambient temperature+4℃) were established to examine the growth response and seed yield of each cultivar. Seed yield showed a higher correlation with seed weight (r=0.713***) and an increase in temperature affected seed yield by reducing the single seed weight. In particular, the seed growth rate of the large-seed cultivar (Daechan) increased at high temperature, resulting in a reduction in the number of days for full maturity. Our results accordingly indicate that large-seed cultivar, such as Daechan, is potentially vulnerable to high temperature stress. The results of this study can be used as basic data in the development of cultivation technology to reduce the damage caused by elevated temperatures. Also, further research is required to evaluate the response of each process contributing to seed yield production under high temperatures.

Growth Responses and Regrowth to Low Temperature of Nine Native Moss Species

  • Gong, Gyeong Yeop;Jeong, Kyeong Jin;Lee, Sang Woo;Yun, Jae Gill
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.575-582
    • /
    • 2019
  • Moss is used as an important material in indoor landscaping as well as outdoor landscaping. Moss is vivid green during growth and excellent in ornamental value. But when temperature drops, moss stops growth, turns brown or loses its ornamental value. In the present experiment, for the purpose of classifying native mosses according to the growth response to low temperature, the temperature of the plant growth chamber was set to 15℃/5℃ (16h/8h, day/night) and 5℃ (24h) for 8 weeks using nine native moss species. Thereafter, the temperature of the plant growth chamber was set to 20℃, and then the changes of moss block area and moss color were measured. The changes of moss block area and moss color were measured using a Photoshop program, after each moss block was photographed. As a result, Atrichum undulatum (Hedw.). Beauv., Etodon luridus (Griff.) A. Jaeger, Bachythecium plumosum (Hedw.) Schimp, Plagiomnium cuspidatum (Hedw.) T.J. Kop, and Hypnum plumaeforme Wilson showed a small decrease in moss block area at low temperature, and their recovery were the fastest at 20℃. These three species had higher green values at low temperature compared to other species, and the greenness increased rapidly at 20℃. On the other hand, Atrichum undulatum (Hedw.). Beauv., Marchantia polymorpha L., and Thuidium cymbifolium (Mitt.) A. Jaeger showed the smallest block area at low temperature and the lowest recovery even at 20℃. Their green values also decreased significantly at low temperature, and maintained low green value even at 20℃. These results showed that these three moss species are sensitive to low temperature. The remaining Myuroclada maximowiczii, Plagiomnium cuspidatum, and H. erectiusculum showed moderate responses to low temperature compared to other six species of mosses.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. IV. Growth Responses Influenced by Temperatures and Light Intensities in Growth Chamber (동계 plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 IV. 생장상내 온도 및 광환경 변화에 따른 생장반응)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.125-130
    • /
    • 1995
  • Observations on the seedling growth of red pepper responding to different temperature(10, 20, 3$0^{\circ}C$) and light intensity(5, 15, 25 klux) were made in the growth Chamber during 7 weeks. The results obtained were as follows; 1. Best results of the combinations of temperature and light intensity were obtained from the combinated treatment of 3$0^{\circ}C$ and 25klux. At all of the temperature levels in this experiment, the more the light intensity is high, the more the growth is favor, but at low temperature below 2$0^{\circ}C$ and low light intensity below 15 klux, the growth of red pepper seedlings was decreased markedly. 2. Multiple regression polynomial equations of the characteristics of red pepper seedlings grown in the different combinations of temperature and light intensity fitted well in the plant height, number of leaves, leaf area, stem dry weight and shoot dry weight. 3. Multiple regression polynomial equation to the shoot dry weight was partial differentiated and diagrammatized the response surface using its theoretical value. Light intensity affected more to the shoot dry weight in the temperature below 2$0^{\circ}C$ but above 2$0^{\circ}C$ the role of the temperature showed greatly influence however, interaction effects of light intensity and temperature showed strongly.

  • PDF

Disign of $Hg_{1-x}Cd_xTe$ OMVPE System and ARIIV Reactor Chamber ($Hg_{1-x}Cd_xTe$ OMVPE System 과 ARIIV Reactor Chamber의 설계 및 제작)

  • ;J.D. Parsons
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.410-415
    • /
    • 1993
  • The direct growth OMVPE system, designed specificallyfor direct growth of Hg1-xCdxTe using annular rectant inlet inverted verticla (ARIIV) reactor, was constructed. This paper presents the detailed technical approach on a newly designed ARIIV reactor that increases Hg incorporation, imposes uniformity, and avoids the needs for temperature processing to create alloys by inter diffusion approach.

  • PDF

Cutting Propagation and Seedling Growth Effect According to Fertilizer Application of Elsholtzia minima Nakai (좀향유의 삽목 증식 및 시비에 따른 유묘의 생장 효과)

  • Kim, Tae-Keun;Kim, Hyoun-Chol;Song, Jin-Young;Lee, Hee-Seon;Ko, Seok-Hyung;Lee, You-mi;Song, Chang-Khil
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.243-252
    • /
    • 2015
  • This study was performed to establish a production system for in situ and ex situ conservation of Elsholtzia minima Nakai, an endemic plant grown in Jeju Island. Moreover, this study aimed to identify root-growth characteristics according to the use of pre-treatment agents and seedling growth effect according to fertilizer application. The mean temperature was similar in greenhouse and vinyl-moist chamber, but air humidity was higher in vinyl-moist chamber than in greenhouse. After stem planting of Elsholtzia minima Nakai, initial root growth was observed after 10 days in greenhouse and after 7 days in vinyl-moist chamber. Root growth rate was more rapid in vinyl-moist chamber. Moreover, survival rate, root growth rate and root number was slightly higher in vinyl-moist chamber than in greenhouse, indicating that vinyl-moist chamber is more effective in plant growth. When pre-treatment agents were used to remove root growth-inhibiting substances, a higher root growth rate of more than 95% was found in pre-treatment groups, excluding the group treated with AgNO3 at 77.5%. Thus, Elsholtzia minima Nakai is thought to have less root growth inhibitors. In the analysis of nitrogen application rate and Osmocote application by seedling container, a difference was found in survival rate and growth according to application rate and container conditions. When Osmocote, a slow release fertilizer, was applied to the soil surface around each culture container, survival rate and the growth of aerial and root parts were most favorable. Thus, Osmocote fertilizer is thought to be desirable for seedling propagation of Elsholtzia minima Nakai.

A Study on Combustion Characteristics of Methane-air Homogeneous Mixture in a Constant Volume combustion Chamber by FIRE Code (FIRE Code를 사용한 정적연소기의 메탄-공기 균질 혼합기 연소특성 연구)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.28-36
    • /
    • 2006
  • A constant volume combustion chamber was used to investigate the combustion characteristics. of homogeneous charge of methane-air mixture under various initial pressure, equivalence ratio and ignition times. The constant volume combustion chamber(CVCC) mostly has been studied by the experiments of visualization until now. So it is needed the numerical analysis of fluid and combustion characteristics in chamber by the more detail simulation. In this paper, the numerical analysis is tried to approach basically the homogeneous charge combustion phenomena under the various conditions, and the combustion phenomena in chamber is numerically analyzed by the commercial FIRE code. As a results, the combustion phenomena which were mean temperature, OH radical and reaction rate in chamber were investigated and it showed that the smallest flame growth occurs for the lean state and the increase of initial charged pressure condition due to the reduced OH radical.

  • PDF