• 제목/요약/키워드: Temperature efficiency

검색결과 5,860건 처리시간 0.031초

Photochemical Response in 0-Year-Old and 1-Year-Old Needles of Picea glehnii during Cold Acclimation and Low Temperature

  • Bae, Jeong-Jin;Hara, Toshihiko;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제31권4호
    • /
    • pp.317-325
    • /
    • 2008
  • P. glehnii, an evergreen conifer found in northern areas, is known as a cold-resistant species. In this experiment, we measured the water content, PSⅡ efficiency, chlorophyll fluorescence, pigments of the xanthophyll-cycle and activity of enzymes of the ascorbate-glutathione cycle during cold acclimation and at subsequent low-temperature conditions to examine the importance of acclimation to cold tolerance. P. glehnii showed a decrease in PSⅡ efficiency (especially in Fv) during cold acclimation and at subsequent low temperatures. However, cold-acclimated needles showed higher PSⅡ efficiency at low temperatures than nonacclimated needles. In addition, 0-YON (first-year needles) showed an increase in $\beta$-carotene and lutein, while 1-YON (one-year-old needles) immediately developed an antioxidant mechanism in the ascorbate-gluthathione cycle as soon as they were exposed to low temperature and both 0-YON and 1-YON showed increased zeaxanthin and de-epoxidation ratios at continuous low temperature. Based on our results, we suggest that P. glehnii maintain PSⅡ efficiency at low temperature by effectively protecting the photosynthetic apparatus from photo-damage by rapid induction of an antioxidant mechanism in 1-YON and dissipation of excess energy by $\beta$-carotene and lutein in 0-YON.

태양광무인기를 위한 박막형 태양전지의 입사각 및 온도에 따른 성능분석 (Effects of the Incidence Angle and Temperature on the Performance of a Thin-Film CIGS Solar Cell for Solar Powered UAVs)

  • 신동훈;김태호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • This research aims to study the effects of the incidence angle and surface temperature on the power generation performance of a thin-film CIGS solar cell for solar powered unmanned aerial vehicles (UAVs). The test rig consists of a unit CIGS solar cell is installed on a table whose angle is controlled manually. A K-type thermocouple is attached to the solar cell surface for temperature measurements. A solar module analyzer measures the voltage and current generated from the test solar cell. The solar module analyzer also calculates the maximum solar power and efficiency of the solar cell. All test data are acquired in a PC. Test results show that the solar cell efficiency decreases significantly with increasing incidence angle and increasing surface temperature in general. As the incidence angle increases from 0 degree to 90 degree, the solar cell efficiency decreases by 60%. The solar cell efficiency decreases by 10% with increasing solar cell surface temperature from $20^{\circ}C$ to $30^{\circ}C$, for exmaple. The direct cooling method of the solar cell using dry ice decreases dramatically the solar cell surface temperature, thus increasing the solar cell efficiency by 15%.

  • PDF

Altitude Effects on the Combustion of the Solid Fuel Ramjet

  • Lee, Tae-Ho
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.476-479
    • /
    • 2008
  • The combustion efficiency of the solid fuel ramjet is affected by the inlet air temperature. And this inlet air temperature is dependent on the flight Mach number and the environment air temperature. If the flight altitude is changeable, the inlet air temperature and the air density also vary. The performance efficiency is investigated with this variables related to the combustion efficiency.

  • PDF

대류-복사 복합 열전달을 고려한 대류 핀효율의 향상에 관한 수치적 연구 (Numerical Investigations of Enhancement of a Convective Fin Efficiency by Convection-Radiation Gonjugate Heat Transfer)

  • 이동렬;김호용;이재곤;박용국;김기대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.146-154
    • /
    • 2001
  • In almost all real situations, there will be a radiant interchange between adjacent fins with the base surface as well as with the external environment. In the problem of this study, a rectangular fin is attached to a based. Our concern is whether the convective fin efficiency can be increased by the radiation heat exchanged between the fin and the base surface and how much. If the fin temperature toward the tip increased by the effect of radiation, the convective heat transfer increase due to the temperature difference between the ambient temperature and the surface temperature of the fin. If this true, the efficiency of the fin due to the radiation will increase. Attention is directed toward several parameters which have major roles on getting values of the fin efficiencies in several different values of parameters. Many different cases are, therefore, to be examined to have maximum fin efficiency by varying the values of each parameter.

  • PDF

PV모듈의 냉각장치를 적용한 집속형 복합패널의 집열 특성 평가 (Thermal Characteristics Evaluation of Concentrated Hybrid Panel with cooling system on PV module)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.47-52
    • /
    • 2005
  • Normally if sunlight is directed on a solar cell without any increasing in temperature, the amount of absorption energy per unit area of each cell is increasing. In a silicon solar cell. however, cell conversion efficiency decreases with the increase of temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. We tried to design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect and use thermal energy more effectively. We compared performance of this new hybrid panel with current thermal panel. We also evaluated conversion efficiency, thermal capacity and confirmed cooling effects from thermal absorption efficiency.

흡입공기온도와 분무압력이 분쇄땅콩의 유동층 코팅효율에 미치는 영향 (Effect of Inlet Air Temperature and Atomizing Pressure on Fluidized Bed Coating Efficiency of Broken Peanut)

  • 강현아;신명곤
    • 한국식품과학회지
    • /
    • 제34권5호
    • /
    • pp.924-926
    • /
    • 2002
  • 분쇄땅콩의 결착력 증대 및 산패방지를 위한 유동층코팅 기술을 개발하고자, 유동충코팅공정의 흡입공기온도 및 분무압력이 분쇄땅콩의 유동층 코팅효율에 미치는 영향을 검토하였다. 흡입공기온도가 높을수록 코팅효율이 증가하였으며, 분무압력도 3 bar까지는 분무압력이 커질수록 코팅효율이 증가하는 경향을 나타내었다. 그리고, 덱스트린과 카제인나트륨로 구성된 코팅물질은 분쇄땅콩의 산패를 부분적으로 억제할 수 있음을 보여주었다.

디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구 (A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst)

  • 김양화;임옥택;김홍석
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

변형가공도를 이용한 AI 5083 합금의 고온변형거동 (High Temperature Deformation Behavior of Al 5083 Alloy Using Deformation Processing Maps)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.450-458
    • /
    • 1998
  • The high temperature deformation behavior of Al 5083 alloy has been studied in the temperature range of 350 to 520 ${\circ}C$ and strain rate range of 0.2 to 3.0/sec by torsion test. The strain rate sensitivity(m) of the material was evaluated and used for estabilishing power dissipation maps following the dynamic material model. These maps show the variation of efficiency of power dissipation(${\eta}$=2m/(2m+1)) with temperature and strain rate. Hot restoration of dynamic recrystallization (DRX) was analyzed from the flow curve, deformed microstructure, and processing maps during hot deformation. Also, the effect of deformation strain on the efficiency of power dissipation of the alloy was analysed using the processing maps. Moreover relationship between the hot-ductility and efficiency of power dissipation of the alloy depending on thmperature and strain rate was studied using the Zener-Hollomon parameter(Z=${\varepsilon}$exp(Q/RT) It is found that the maximum efficiency of power dissipation for DRX in Al 5083 alloy is about 74.6 pct at the strain of 0.2. The strain rate and temperature at which the efficiency peak occurred in the DRX domain is found to be ∼0.1/sec and ∼450${\circ}C$ respectively.

  • PDF

유기 플래쉬 사이클(OFC)의 열역학적 성능 특성 (Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC))

  • 김경훈;정영관;박상희
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.91-97
    • /
    • 2013
  • Recently a novel cycle named organic flash cycle (OFC) has been proposed which has improved potential for power generation from low-temperature heat sources. This study carries out thermodynamic performance analysis of OFC using various working fluids for recovery of low-grade heat sources in the form of sensible energy. Special attention is focused on the optimum flash temperature at which the exergy efficiency has the maximum value. Under the optimal conditions with respect to the flash temperature, the thermodynamic performances of important system variables including mass flow ratio, separation ratio, heat addition, specific volume flow rate at turbine exit, and exergy efficiency are thoroughly investigated. Results show that the exergy efficiency has a peak value with respect to the flash temperature and the optimum working fluid which shows the best exergy efficiency varies with the operating conditions.

소결 온도 변화에 따른 $TiO_2$ 전극의 AFM 표면형상 비교 및 DSC 효율 특성 (AFM morphology of $TiO_2$ electrode with differential sintering temperature and efficiency properties Dye-Sensitized solar cells)

  • 김현주;이동윤;구보근;이원재;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.461-462
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature(350 to $550^{\circ}C$). $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSC were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). From the measurement results, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSC were mutually complementary, enhancing highest fill factor and efficiency. Consequently, it was considered that optimum sintering temperature of $\alpha$-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

  • PDF