• Title/Summary/Keyword: Temperature curing

Search Result 1,358, Processing Time 0.032 seconds

Autogenous Shrinkage of High Strength Mortar According to the Curing Temperature Variation (양생온도 변화에 따른 고강도 모르터의 자기수축 특성)

  • Song, Ri-Fan;Lee, Il-Sun;Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.83-85
    • /
    • 2010
  • This study, by analyzing autogenous shrinkage of high-strength mortar according to changes of curing temperature, examined whether or not predictive autogenous shrinkage by an accumulated temperature method can be calculated. As a result, it could be known that dependency of autogenous shrinkage on temperature can be examined, but the autogenous shrinkage amount according to accumulated temperature was similar before and after the early $100 ^{\circ}D{\cdot}D$ and, after that, the difference in shrinkage amount by curing temperature was large.

  • PDF

Effect of curing temperature and blast furnace slag concrete on concrete strength development (양생온도가 고로슬래그 콘크리트의 강도발현에 미치는 영향분석)

  • Lee, Kyu-Dong;Jun, Myeong-Il;Lee, Chang-Soo;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • The present work is attempt to evaluate the temperature dependence of blast furnace slag concrete(BFSC) based on the concrete strength cured with different curing temperatures and ages. A equivalent substitution index(ESI) was induced to explain temperature dependence of concrete quantitatively as well as concrete strength. The results from compressive strength showed substantial crossover effect. which is the phenomenon that the compressive strength cured at low temperature becomes stronger than the one cured at high temperature. The crossover effect found more definitely on BFSC than plain concrete.. The ESI became 1.1 and 1.0 for the BFSC cured at $20^{\circ}C$ and $30^{\circ}C$ after age of 56 days, respectively. Which means that the contribution to strength development of blast furnace slag per unit mass is stronger than that of the Portland cement. It was considered therefore that the optimum curing temperature for BFSC is $20^{\circ}C$.

  • PDF

Strength Estimation Model of Early-Age Concrete Considering Degree of Hydration and Porosity (수화도와 공극률을 고려한 초기재령 콘크리트의 강도 예측 모델)

  • 황수덕;이광명;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Maturity models involving curing temperature and curing ages have been widely used to predict concrete strength, which can accurately estimate concrete strength. However, they may not consider physical quantities such as the characteristics of hydrates and the capillary porosity of microstructures associated with strength development. In order to find out the effects of both factors on a strength increment, the hydration model and the estimation method of the amount of capillary porosity were established, and the compressive strength test of concrete nth various water/cement ratios was carried out considering two test parameters, curing temperature and curing age. In this study, by analyzing the experimental results, a strength estimation model for early-age concrete that can consider the microstructural characteristics such as hydrates and capillary porosity was proposed. Measured compressive strengths were compared with estimated strengths and good agreements were obtained. Consequently, the proposed strength model can estimate compressive strength of concrete with curing age and curing temperature within an acceptable error.

Influence of Na/Al Ratio and Curing Temperature of Geopolymers on Efflorescence Reduction (Na/Al 비와 양생온도가 지오폴리머의 백화억제에 미치는 영향)

  • Kim, Byoungkwan;Heo, Ye-Eun;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2018
  • Efflorescence is a white deposit of powders in the surface of cement concrete which can also occur in geopolymers. Efflorescence occurs when sodium ions in alkali activator react with atmospheric carbon dioxide to form sodium carbonate components. In this study, we investigated whether the secondary efflorescence can be reduced by controlling the Na/Al mole ratio or by changing the curing temperature and heat curing time in fly ash-based geopolymers. The 28 days compressive strength in geopolymers having Na/Al ratio of 1.0 was higher than geopolymers having Na/Al ratio of 0.8. The strength increased with the increasing curing temperature and longer heat curing time. On the other hand, efflorescence was lower when the curing temperature was high and the heat curing time was longer in the geopolymers having Na/Al ratio of 1.0. The geopolymers having Na/Al ratio of 0.8 showed accelerated efflorescence occurrence than the geopolymers having Na/Al ratio of 1.0. In order to reduce the occurrence of the secondary efflorescence of fly ash-based geopolymers, it will be advantageous to maintain the Na/Al ratio at 1.0, increase the curing temperature, and lengthen the heating curing time.

Strength Properties by Curing Temperature of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 양생온도에 따른 강도성상)

  • 이동하;정근호;백민수;김성식;임남기;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.63-66
    • /
    • 2002
  • In this study, it does a high volume flyash substituted concrete experiments in two curing temperature circumstances - 35$^{\circ}C$, 2$0^{\circ}C$. High volume flyash concrete is tested in fresh concrete properties and hardeded concrete properties. In the fresh concrete test items, there is slump, air contents, concrete setting tests. 3, 7, and 28 days water curing compressive strength is measured in the hardened concrete test. The purpose of this study is to submit a various flyash concrete data for application to field. The result of this study is that the best strength is developed at the plain concrete cured 2$0^{\circ}C$ and Mixing F43 shows the best strength among specimens which cured at 35$^{\circ}C$

  • PDF

Strength Development of Mock-up Concrete Structure subjected to Extremely Low Temperature Condition Due to Curing Methods (극저온 조건에서의 양생방법 변화에 따른 실구조체 콘크리트의 강도발현 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.47-49
    • /
    • 2012
  • Under this study, the characteristics of concrete intensity condition following the curing method under the extremely low temperature environment have been contemplated, and as a result, in the event of insulation + heat cable curing, the intensity and accumulated temperature accomplishment period is required for two times of requiring initial frost damage prevention than the case of heating + heat insulation curing method due to the insufficient calories supplied in general.

  • PDF

Study on the Strength Development of Fly ash Replace Concrete by a In-situ Temperature System (온도추종 양생 장치에 의한 플라이애쉬 치환 콘크리트의 강도 발현 성상)

  • Lee, Gun-Cheol;Yoon, seung-joe;Lee, Gun-Young;Choi, Jung-Gu;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.126-127
    • /
    • 2014
  • At construction sites, due to the reason of inconvenience and difficulties of producing and using curing equipment and when it comes to measuring compression strength of the actual structure, strength of structure concrete according to general standards which are suggested in concrete standard specification are assessed. However, this method does not consider various variables of the sites such as kinds concretes and sizes of frame works so that it is not easy to measure proper curing period and strength. Thus, this study reviews description of strength development according to In-situ temperature system and analyzes and compares properties of strength development of the existing curing methods such as sealing curing so that it provides basic materials for period of removal of molds.

  • PDF

An Experimental Study on the Strength Development of Fly-Ash Mortar by Using the Activator and Curing Temperature change. (자극제 사용 및 양생온도 변화에 의한 플라이애쉬 모르타르의 강도발현에 관한 실험적 연구)

  • 배수환;최광윤;정재동;최영화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.277-280
    • /
    • 2003
  • The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cement. First of all, we examined strength development of Micro grinding fly ash by elevating its fineness and using $Na_{2}SO_{4}$ as an activator to elevate pozzolanic reaction of fly ash. Following fly ash replacement ratio and curing temperature we hope to prove its properties to suggest its possibility in the concrete and cement industry. In case of water curing, the more fineness and higher annexing of activator is, the higher strength is, and the higher curing temperature is the more pozzolanic reaction happens.

  • PDF

Preparation and Properties of Crosslinkable Waterborne Polyurethanes Containing Aminoplast -Effect of Curing Condition-

  • Kwon Ji-Yun;Rahman Mohammad Mizanur;Kim Han-Do
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.95-104
    • /
    • 2006
  • In order to improve the water swelling, thermal/mechanical and adhesion properties of waterborne polyurethane (WBPU), a series of the crosslinkable WBPUs containing hydrophilic ionic component, dimethylol propionic acid (20 mole%), were prepared by in-situ polymerization using a cross-linker hexakis (methoxymethyl) melamine (HMMM). Effects of the HMMM content (2, 4, and 6 wt%) and curing temperature on these properties of the crosslinked WBPUs samples were investigated. All properties were found to increase with increasing HMMM content. It was found that the optimum curing temperature of the WBPU films and adhesives was near $120^{\circ}C$, which was not dependent on the HMMM content.

Fundamental Study on Compressive Strength Recovery for Excessive High-volume Blast Furnace Slag Mortar (고로슬래그가 다량치환된 모르타르의 알칼리 처리에 의한 압축강도 회복 가능성 분석)

  • Choi, Yoon-Ho;Sin, Se-Jun;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.103-104
    • /
    • 2019
  • The aim of the research is assessing the possibility of recovering the compressive strength of the mortar mixture replaced excessively high volume of blast furnace slag accidently. As a result of the experiment, in the case of compressive strength, painting sodium oxide showed higher compressive strength recovery effect than painting calcium oxide. As a curing temperature, 20℃ showed advanced result rather than 65℃. From the wet curing, the reaction was confirmed, deeper penetration depth was checked at 20℃ than 60℃ temperature. Therefore for the concrete mixture with excessively high volume of blast furnace slag, it is considered that painting sodium hydroxide and curing 20℃ can recover the compressive strength effectively.

  • PDF