• Title/Summary/Keyword: Temperature control algorithm

Search Result 450, Processing Time 0.022 seconds

The Supply Water Algorithm for a Condensing Gas Boiler Control (콘덴싱가스보일러 제어를 위한 공급수알고리즘)

  • Han, Do-Young;Yoo, Byeong-Kang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.441-448
    • /
    • 2011
  • The energy consumption of a condensing gas boiler may be greatly reduced by the effective operation of the unit. In this study, the supply water algorithm for a condensing gas boiler control was developed by using the fuzzy logic. This includes the supply water set temperature algorithm, and the control algorithms of a gas valve, a blower and a pump. For the set temperature algorithm, the outside air temperature and the return water temperature were used as input variables. The supply water temperature difference and its slope were used as input variables of the gas valve and blower control algorithm. And the supply water temperature and the return water temperature were used as input variables of the pump control algorithm. In order to analyse performances of these algorithms, the dynamic model of a condensing gas boiler was used. The initial start-up test, the supply water set temperature change test, the outside air temperature change test, and the return water temperature change test were performed. Simulation results showed that algorithms developed in this study may be practically applied for the effective control of a condensing gas boiler.

Boiler Supply Water Temperature Setting by Outside Air Temperature and Return Water Temperature (외기온도와 환수온도를 이용한 보일러의 공급수온도설정)

  • Han, Do-Young;Yoo, Byeong-Kang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.161-166
    • /
    • 2009
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a boiler unit, the effective operation is necessary. In this study, the supply water temperature algorithm of a condensing gas boiler was developed. This includes the setpoint algorithm and the control algorithm of the supply water temperature. The setpoint algorithm was developed by the fuzzy logic and the control algorithm was developed by the proportional integral algorithm. In order to analyse the performance of the supply water temperature algorithm, the dynamic model of a condensing gas boiler system was used. Simulation results showed that the supply water temperature algorithm developed for this study may be practically applied for the control of the condensing gas boiler.

  • PDF

Fuzzy-PWM control for adjustment of power rate of a multiple point temperature controller (다점 온도 제어 장치의 power 공급율 조정을 위한 fuzzy-PWM제어)

  • 이장명;윤종보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.80-92
    • /
    • 1997
  • This research focuses onan efficient control method of temperature for multiple points using only one processor. For a yarn production system, the surface temperature control of heaters are very important for quality control. Therefore, we designed a temperature controller for a draw and twist machine and applied Fuzzy-PWM algorithm to the controller. If we use a processor for the temperature control of multiple points with the conventional ON/OFF control, the control performance of the system becomes poor. To overcome these problems, we developed a new Fuzzy-PWM algorithm for the adjustment of power rate to the heaters in the conventional ON/OFF control. It is shown that this algorithm has the same effects as the PID algorithm for the temperature control of each point. The proposed algorithm is robust against the production condition and environment such as the reference temperature and the thickness of yarn, since the power rate to the heater is adjusted by Fuzzy Rules derived from the values of the reference termperatureand the thickness of yarn. To obtain optimal Fuzzy rulees, the control simulations are perfodrmed through the modelling of the heater and simulation of Fuzzy rules. This algorithm is applied for the multiple pont temperature controller and showed satisfactory performance.

  • PDF

Practical Algorithms for the Effective Operation of a $CO_2$ Air-conditioner (이산화탄소에어컨의 효율적인 운용을 위한 실용알고리즘)

  • Han, Do-Young;Park, Seung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.435-440
    • /
    • 2009
  • For the effective control of a $CO_2$ air-conditioning system, the system high-side pressure algorithm, the indoor temperature algorithm, and the outdoor fan algorithm were developed. The system high-side pressure algorithm was composed of the setpoint algorithm, the reset algorithm, and the electronic expansion valve control algorithm. The indoor temperature algorithm was composed of the compressor control algorithm and the indoor fan control algorithm. These algorithms were tested by using mathematical models developed from the previous study. Results from the setpoint step change test and the disturbance test showed good control performances. Therefore, algorithms developed in this study may practically used for the control of a $CO_2$ air-conditioning system.

  • PDF

Implementation of Optimal Temperature Controller for Thermoelectric Device-based Heating System Using Genetic Algorithm (유전알고리즘을 이용한 열전소지 기반 히팅 시스템의 최적 온도 제어기 구현)

  • Jung-Shik Kong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.41-47
    • /
    • 2023
  • This paper presents the development of a controller that can control the temperature of an heating system based on a thermoelectric module. Temperature controller using Peltier has various external factors such as external temperature, characteristics of an aluminum plate, installation location of temperature sensors, and combination method between the aluminum plate and heating element. Therefore, it is difficult to apply the simulation and simulation results of heating system using Peltier at control algorithm. In general, almost temperature controller is using PID algorithm that finds control gain value heuristically. In this paper, it is proposed mathematical model that explain correlate between the temperature of the heating system and input voltage. And then, optimal parameter of estimated thermal model of the aluminum plate are searched by using genetic algorithm. In addition, based on this estimated model, the optimal PID control gain are inferred using a genetic algorithm. All of the sequence are simulated and verified with proposed real system.

The EEV Control of the Multi-type Air-conditioning System by using a Fuzzy Logic Superheat Temperature Setpoint Reset Algorithm (퍼지로직 과열도 재설정 알고리즘을 사용한 멀티형 냉방시스템의 전자팽창밸브 제어)

  • 한도영;이상원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.382-388
    • /
    • 2003
  • Refrigerant flow rates of the multi-type air-conditioning system can be regulated by electronic expansion valves (EEV). The performance of the multi-type air-conditioning system may be improved by lowering the superheat at the compressor suction side. In this study, a superheat temperature setpoint reset algorithm was developed by using fuzzy logics, and a PI algorithm was applied to control the superheat temperature near setpoints. Experimental results showed energy savings and stable operations at a multi-type air-conditioning system. Therefore, the developed setpoint reset algorithm may be effectively used for the EEV superheat temperature control of the multi-type air-conditioning system.

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

Actuator multiple control method for greenhouse environment control system (온실 환경 제어시스템을 위한 액추에이터 복합 제어 방법)

  • Son, Kyo-Hoon;Park, Dae-Heon;Kim, Se-Han;Kim, Jae-Hyung;Jeung, Eun-Tae
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.39-45
    • /
    • 2012
  • In recent years the USN(Ubiquitous Sensor Networks) technology has been applied in the greenhouse in order to control temperature and humidity automatically. In this paper, we proposed a control algorithm using feedback linearization techniques based on a mathematical model for temperature and humidity environment. Especially, Control algorithm is presented to the operation of the ventilator affecting on the temperature and humidity system at the same time. The System has been designed taking into account the disturbance(External temperature, soil temperature, external humidity, solar radiation and wind). In conclusion, I will present a way to control multiple actuator through simulations. The proposed control algorithm is validated using the Matlab/Simulink tools.

  • PDF

Control of Compressors and Electronic Expansion Valve considering the Safe Operation of a Tandem-type Air-conditioning system (텐덤형 냉방시스템의 안전운전을 고려한 압축기와 전자팽창밸브 제어)

  • Han, Do-Young;Kim, Jae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.675-680
    • /
    • 2006
  • Capacities of a tandem-type air-conditioner may be modulated by turning on and off of multiple compressors, and adjusting the position of a electronic expansion valve. In this study, control algorithms for compressors and a electronic expansion valve were developed by using fuzzy logics. The pressure control algorithm was also developed for the safe operation of compressors. There algorithms were implemented in a test lab and proved to be effective for the control of indoor air temperature and superheat temperature,

  • PDF

Design of temperature control system using cool-plate of track equipment (트랙장비용 쿨 플레이트를 이용한 웨이퍼 온도제어 시스템 설계)

  • Choi, Young-Jin;Oh, Byung-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.110-113
    • /
    • 2002
  • This paper propose a method for the temperature control using cool-plate in the track equipment. The employed control algorithm is PID control algorithm. The control gains are found using relay auto-tuning algorithm. After that the gains are adjusted manually in trial and error. The control hardware circuit is designed and implemented in the lab. The controlled temperature reached the desired value Within $\pm0.05^{\circ}C$ accuracy.

  • PDF