• Title/Summary/Keyword: Temperature coefficient resistance

Search Result 539, Processing Time 0.027 seconds

Effect of load on the wear and friction characteristics of a carbon fiber composites (탄소 섬유 복합재의 마찰 및 마모 특성에 미치는 하중 효과)

  • Koh, Sung-Wi;Yang, Byeong-Chun;Kim, Hyung-Jin;Kim, Jae-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.344-350
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite wear selected. When sliding took place against smooth and hard counterpart, the highest were resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

Development of High Density Inductively Coupled Plasma Sources for SiH4/O2/Ar Discharge (고밀도 유도 결합 플라즈마 장치의 SiH4/O2/Ar 방전에 대한 공간 평균 시뮬레이터 개발)

  • Bae, S.H.;Kwon, D.C.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.426-434
    • /
    • 2008
  • A space averaged $SiH_4/O_2/Ar$ simulator for the high density inductively coupled plasma sources for $SiH_4/O_2/Ar$ discharge is developed. The developed simulator uses space averaged fluid equations for electrons, positive ions, negative ions, neutral species, and radicals in $SiH_4/O_2/Ar$ plasma discharge, and the electron heating model including the anomalous skin effect. Using the developed simulator, the dependency of the density of charged particles, neutral particles, and radicals, the electron temperature, the plasma resistance, and the power absorption coefficient for the RF power and pressure is calculated.

Study on the Behavior of the Fish - 1 . The Swimming Force of Crusian Carp , Carassius Carassius - (어류의 행동에 관한 연구 - 1 . 붕어의 유영력 -)

  • 손태준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 1984
  • The author carried out an experiment for the dynamical swimming force of crusian carp, Carassius carassius. The experimental water tank was made of 4mm thick transparent acryl board in the right hexahedral shape (400L$\times$240W$\times$800H mm). The water temperature in the tank ranged 20.6$^{\circ}C$ to 21.2$^{\circ}C$. The water level in the tank was maintained 70cm high from the bottom. The measurement of the swimming force was carried out by use of strain gauge. The results obtained can be summarized as follows: 1) The momentary maximum swimming force F sub(M) (g) and the sustainable maximum swimming force F sub(s) (g) can be expressed as a function of the body weight W(g). F sub(M) =1.45W, F sub(s) =0.29W where the momentary maximum swimming force means the highest value, and the sustainable maximum swimming force means the mean high value sustained for 4 to 5 seconds presented in the recording paper. 2) F sub(M) and F sub(s) can be expressed as a function of the body length L(cm). F sub(M) =0.11L super(2.63), F sub(s) =0.15L super(1.77) 3) The coefficient of hydraulic resistance for crusian carp was derived as 0.287.

  • PDF

Properties Optimization for Perovskite Oxide Thin Films by Formation of Desired Microstructure

  • Liu, Xingzhao;Tao, Bowan;Wu, Chuangui;Zhang, Wanli;Li, Yanrong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.715-723
    • /
    • 2006
  • Perovskite oxide materials are very important for the electronics industry, because they exhibit promising properties. With an interest in the obvious applications, significant effort has been invested in the growth of highly crystalline epitaxial perovskite oxide thin films in our laboratory. And the desired structure of films was formed to achieve excellent properties. $Y_1Ba_2Cu_3O_{7-x}$ (YBCO) superconducting thin films were simultaneously deposited on both sides of 3 inch wafer by inverted cylindrical sputtering. Values of microwave surface resistance R$_2$ (75 K, 145 GHz, 0 T) smaller than 100 m$\Omega$ were reached over the whole area of YBCO thin films by pre-seeded a self-template layer. For implementation of voltage tunable high-quality varactor, A tri-layer structured SrTiO$_3$ (STO) thin films with different tetragonal distortion degree was prepared in order to simultaneously achieve a large relative capacitance change and a small dielectric loss. Highly a-axis textured $Ba_{0.65}Sr_{0.35}TiO_3$ (BST65/35) thin films was grown on Pt/Ti/SiO$_2$/Si substrate for monolithic bolometers by introducing $Ba_{0.65}Sr_{0.35}RuO_3$ (BSR65/35) thin films as buffer layer. With the buffer layer, the leakage current density of BST65/35 thin films were greatly reduced, and the pyroelectric coefficient of $7.6\times10_{-7}$ C $cm^{-2}$ $K^{-1}$ was achieved at 6 V/$\mu$m bias and room temperature.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

Structural and Electrical Properties of (La,Nd,Sr)MnO3 Ceramics for NTC Thermistor Devices

  • Shin, Kyeong-Ha;Park, Byeong-Jun;Lim, Jeong-Eun;Lee, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.292-296
    • /
    • 2022
  • (La0.5Nd0.2Sr0.3)MnO3 specimens were prepared by a solid-state reaction. In all specimens, X-ray diffraction patterns of an orthorhombic structure were shown. The fracture surfaces of (La0.5Nd0.2Sr0.3)MnO3 specimens showed a transgranular fracture pattern be possibly due to La ions (0.122 nm) as a perovskite A-site dopant substituting for Nd ions (0.115 nm) having a small ionic radius. The full-width at half maximum (FWHM) of the Mn 2p XPS spectra showed a value greater than that [8] of the single valence state, which is believed to be due to the overlapping of Mn2+, Mn3+, and Mn4+ ions. The dependence of Mn 2p spectra on the Mn3+/Mn4+ ratio according to sintering time was not observed. Electrical resistivity resulted in the minimum value of 100.7 Ω-cm for the specimen sintered for 9 hours. All specimens show a typical negative temperature coefficient of resistance (NTCR) characteristics. In the 9-hour sintered specimen, TCR, activation energy, and B25/65-value were -1.24%/℃, 0.19 eV, and 2,445 K, respectively.

Analysis of Monoclinic Phase Change and Microstructure According to High-temperature Heat Treatment of Oxide-doped YSZ (산화물이 Doping된 YSZ의 고온 열처리에 따른 Monoclinic 상변화 및 미세구조 분석)

  • Gye-Won, Lee;Yong-Seok, Choi;Chang-Woo, Jeon;In-Hwan, Lee;Yoon-Suk, Oh
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.468-476
    • /
    • 2022
  • Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200℃ or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Thermal-Hydraulic Analysis and Parametric Study on the Spent Fuel Pool Storage (기사용 핵연료 저장조에 대한 열수력 해석 및 관련 인자의 영향 평가)

  • Lee, Kye-Bock;Nam, Ki-Il;Park, Jong-Ryul;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.19-31
    • /
    • 1994
  • The objective of this study is to conduct a thermal-hydraulic analysis on the spent fuel pool and to evaluate a parametric effect for the thermal-hydraulic analysis of spent fuel pool. The selected parameters are the Reynolds Number and the gap flow through the oater gap between fuel cell and fuel bundle. The simplified flow network for a path of fuel cells is used to analyze the natural circulation phenomenon. In the flow network analysis, the pressure drop for each assembly from the entrance of the fuel rack to the exit of the fuel assembly is balanced by the driving head due to the density difference between the pool fluid and the average fluid in each spent fuel assembly. The governing equations ore developed using this relation. But, since the parameters(flow rate, pressure loss coefficient, decay heat, density)are coupled each other, iteration method is used to obtain the solution. For the analysis of the YGN 3&4 spent fuel rack, 12 channels are considered and the inputs such as decay heat and pressure loss coefficient are determined conservatively. The results show the thermal-hydraulic characteristics(void fraction, density, boiling height)of the YGN 3&4 spent fuel rack. There occurs small amount of boiling in the cells. Fuel cladding temperature is lower than 343.3$^{\circ}C$. The evaluation of parametric effect indicates that flow resistances by geometric effect are very sensitive to Reynolds number in the transition region and the gap flow is negligible because of the larger flow resistance in the gap flow path than in the fuel bundle.

  • PDF

Development of Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) Intergrowth Cathode Material for Solid Oxide Fuel Cells

  • Lee, Seung-Jun;Yong, Seok-Min;Kim, Dong-Seok;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.1-45.1
    • /
    • 2011
  • Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) oxide have been synthesized and investigated as a potential cathode material for solid oxide fuel cells (SOFCs). $Sr_4Fe_6O_{13}$ consists of alternating perovskite layers ($Sr_4Fe_2O_8$) containing iron cations in octahedral oxygen coordination and $Fe_4O_5$ layers where iron cations have 5-fold coordination of two types-square pyramids and trigonal bipyramids. Our preliminary electrochemical testes of pristine $Sr_4Fe_6O_{13}$ show a rather high area specific resistance ($0.47{\Omega}cm^2$ at $700^{\circ}C$) for ~20 ${\mu}m$ thick layers with CGO electrolyte. The electrochemical performances are improved by La addition up to x=1 ($La_1Sr_3Fe_6O_{13}$, $0.06{\Omega}cm^2$ at $700^{\circ}C$). In addition, thermal expansion coefficient (TEC) values of $La_1Sr_3Fe_6O_{13}$ specimen demonstrated $15.1{\times}10^{-6}\;^{\circ}C^{-1}$ in the range of 25-900$^{\circ}C$, which provides good thermal expansion compatibility with the CGO electrolyte. An electrolyte supported (300-${\mu}m$-thick) single-cell configuration of $La_1Sr_3Fe_6O_{13}$/CGO/Ni-CGO delivered a maximum power density of 584 $mWcm^{-2}$ at $700^{\circ}C$. In addition, an anode supported single cell by YSZ electrolyte (10-${\mu}m$-thick) with a porous CGO interlayer between the cathode and the electrolyte to avoid undesired interfacial reactions exhibited 1,517 $mWcm^{-2}$ at $800^{\circ}C$. The unique composition of $La_1Sr_3Fe_6O_{13}$ with low thermal expansion coefficient and higher electrochemical properties could be a good cathode candidate for intermediate temperature SOFCs with CGO and YSZ electrolyte.

  • PDF