• Title/Summary/Keyword: Temperature Simulation

Search Result 4,560, Processing Time 0.045 seconds

A Simulation Study on Distributions of Smoke and Temperature in Accommdation on Shipboard Fires (선박의 거주구역 화재시 연기거동 및 온도변화에 관한 시뮬레이션 연구)

  • Kim, Won-Ouk;Kim, Jong-Su;Oh, Sae-Gin;Kim, Sung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.293-294
    • /
    • 2006
  • This paper aims to simulate by FDS(Fire Dynamics Simulator) the distributions of temperature and smoke on fires in accommodations on boards. The paper focuses on analysis of temperature at fire occurrence and soot density. The purpose of this study is to predict the possibility of safe escape and efficient fire extinguishing method using fire simulation results.

  • PDF

Development of Continuous Cross-Flow Rice Drying Model (벼의 횡류 연속식 건조 모델 개발)

  • 송대빈;고학균
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.279-288
    • /
    • 1997
  • This study was worked out to obtain fundamental data needed for developing a continuous type dryer. The drying process in a cross-flow type continuous dryer was expressed as partial differential equations, and a drying simulation model for predicting rice moisture content, rice temperature, drying air absolute humidity, drying air temperature was developed by using the finite difference method. To validate the performance of the drying simulation model, a prototype continuous dryer was constructed in this study. The size of the test dryer was one-tenth to that of a commercial continuous dryer. The difference in the outlet rice moisture content between the predicted values and the measured values was within 0.5%, that of outlet rice temperature was below $3^{\circ}C$, that of drying air temperature in drying bed was within $8^{\circ}C$ and that of relative humidity of outlet drying air was big because of the different measuring point. In addition, a drying simulation model for a actual size continuous dryer with double flow was developed in this study. This drying simulation model included the rice mixing effect in the middle of drying length. The difference of outlet moisture content between the predicted and the measured values showed below 0.5% in this study.

  • PDF

Prediction of Airflow and Temperature Field in a Room With Convective Heat Source (열원이 존재하는 작업장내 기류 및 온도장 예측)

  • Jung, Yu-Jin;Ha, Hyun-Chul;Kim, Tae-Hyeung;Yoo, Guen-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • A CFD simulation of airflow and temperature field in a heated room has been described in this paper. The thermal wall jet created by a radiator greatly influences the airflow pattern, temperature distribution. The area close La a heat source has a higher risk of air-borne contamination and imposes a harmful effect on occupants in that area. The predicted flow field, temperature results show good agreement with the measured data. As the results were compared with experimental data, the applicability of CFD was satisfactorily verified. Also, the CFD simulation can capture the natural convective flow features. If a CFD simulation is applied ventilation design with a heat source, An effective design will be attained. Further study is required to improve the accuracy of CFD simulation.

  • PDF

A Study on Sensitivity Analysis for Numerical Solution of Passenger Train Fire (여객 열차 화재의 수치해석을 위한 민감도 분석)

  • Kim, Woo-Seok;Roh, Sam-Kew;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The aim of this study is to analyse the sensitivity of fire simulation parameters including grid size and solid angle number which affect the performance of subway cabin fire simulation by FDS 4.07 version. The results of sensitivity analysis shows average of $10{\sim}20%$ differences in plume temperature, upper layer temperature, and layer height depending on the change of grid size. The study also shows that simulation with 0.05m grid size produces better resolution than that with coarse one which is 0.1m.

Thermal-hydraulic and load following performance analysis of a heat pipe cooled reactor

  • Guanghui Jiao;Genglei Xia;Jianjun Wang;Minjun Peng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1698-1711
    • /
    • 2024
  • Heat pipe cooled reactors have gained attention as a potential solution for nuclear power generation in space and deep sea applications because of their simple design, scalability, safety and reliability. However, under complex operating conditions, a control strategy for variable load operation is necessary. This paper presents a two-dimensional transient characteristics analysis program for a heat pipe cooled reactor and proposes a variable load control strategy using the recuperator bypass (CSURB). The program was verified against previous studies, and steady-state and step-load operating conditions were calculated. For normal operating condition, the predicted temperature distribution with constant heat pipe temperature boundary conditions agrees well with the literature, with a maximum temperature difference of 0.4 K. With the implementation of the control strategy using the recuperator bypass (CSURB) proposed in this paper, it becomes feasible to achieve variable load operation and return the system to a steady state solely through the self-regulation of the reactor, without the need to operate the control drum. The average temperature difference of the fuel does not exceed 1 % at the four power levels of 70 %,80 %, 90 % and 100 % Full power. The output power of the turbine can match the load change process, and the temperature difference between the inlet and outlet of the turbine increases as the power decreases.

Impact of fuel temperature on nuclear core design calculations

  • Dusan Calic;Luka Snoj;Marjan Kromar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3668-3685
    • /
    • 2024
  • The operation of a nuclear power plant relies on precalculated nuclear design predictions based on core calculations of various reactor states. The fuel temperature is a crucial factor in determining the reactor fuel behavior, but assessing the temperature variation in a fuel pellet taking into account neutron transport is challenging. Detailed simulation of the temperature behavior within the fuel pellet can be obtained by coupling of Monte Carlo neutron transport codes with thermal-hydraulics solvers. However, this approach is not practical for standard nuclear design calculations, and computationally cheaper and faster methods must be used. In nuclear core simulators, a concept of a single "effective temperature" that yields the same neutron response as in the case of the actual temperature shape is mainly applied. This paper evaluates various fuel temperature models used in nuclear core simulation calculations, ultimately recommending a new effective temperature model that considers the burnup correction.

A simulation on the energy saving based on different temperature tracing method and weather condition in electrical power plant (화력발전소 배관시스템의 운전 및 기후조건에 따른 에너지절감에 관한 시뮬레이션)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • Most of steam power plants in Korea are using the method of heating the feed water whenever the ambient temperature around the power plant area below $5^{\circ}C$ to prevent freezing water flowing in the pipe in winter time. But this kind of heat supplying system is not useful to save energy. If we take the method that the temperature of the each pipe is controled by direct measure of temperature by attaching sensor on the outside surface of the feed water tubes, then we can expect that a plenty of energy can be saved. In this study, the computer simulation is used to compare the energy consumption loads of both systems. Energy saving rate is calculated for the location of Incheon area in winter season. Four convection heat transfer coefficients for the ambient air and three initial flowing water temperature inside the tube were used. The result shows that the temperature control system using sensor represents more than 95% of energy saving rate in Incheon area. Even in the severe January weather condition, the energy saving rate is almost 75% in two days basis and even 83% in one day basis.

Impact of Meteorological Initial Input Data on WRF Simulation - Comparison of ERA-Interim and FNL Data (초기 입력 자료에 따른 WRF 기상장 모의 결과 차이 - ERA-Interim과 FNL자료의 비교)

  • Mun, Jeonghyeok;Lee, Hwa Woon;Jeon, Wonbae;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1307-1319
    • /
    • 2017
  • In this study, we investigated the impact of different initial data on atmospheric modeling results using the Weather Research and Forecast (WRF) model. Four WRF simulations were conducted with different initialization in March 2015, which showed the highest monthly mean $PM_{10}$ concentration in the recent ten years (2006-2015). The results of WRF simulations using NCEP-FNL and ERA-Interim were compared with observed surface temperature and wind speed data, and the difference of grid nudging effect on WRF simulation between the two data were also analyzed. The FNL simulation showed better accuracy in the simulated temperature and wind speed than the Interim simulation, and the difference was clear in the coastal area. The grid nudging effect on the Interim simulation was larger than that of the FNL simulation. Despite of the higher spatial resolution of ERA-Interim data compared to NCEP-FNL data, the Interim simulation showed slightly worse accuracy than those of the FNL simulation. It was due to uncertainties associated with the Sea Surface Temperature (SST) field in the ERA-Interim data. The results from the Interim simulation with different SST data showed significantly improved accuracy than the standard Interim simulation. It means that the SST field in the ERA-Interim data need to be optimized for the better WRF simulation. In conclusion, although the WRF simulation with ERA-Interim data does not show reasonable accuracy compared to those with NCEP-FNL data, it would be able to be Improved by optimizing the SST variable.

Simulation of the Characteristics of High-Performance Absorption Cycles (고성능 흡수냉동 사이클의 특성 시뮬레이션)

  • 윤정인;오후규;이용화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.231-239
    • /
    • 1995
  • This paper describes a computer simulation of the triple effect, water-lithium bromide absorption cooling cycles. The performance of the absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature, the working solution concentrations, the ratio of the amount of the weak solution to the high, middle and low temperature generators, and the temperature difference of each solution heat exchanger. The efficiency of different cycles has been studied and the simulation results show that higher coefficient of performance could be obtained for the parallel cycle of constant solution distribution rate. As a result of this analysis, the optimum designs and operating conditions were determined based on the operating conditions and coefficient of performance.

Simulation of Rice Circulating Concurrent-flow Dryer (벼의 순환병류건조기(循環竝流乾操機)의 시뮬레이션)

  • Keum, D.H.;Lee, W.S.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.59-70
    • /
    • 1988
  • A computer simulation model for rice circulating concurrent-flow dryer was developed and verified by conduction a series of pilot-scale experiment. The effects of design parameter and operating conditions on dryer performance were analyzed by using simulation. The results indicated that the developed model was found suitable for analyzing operating characteristics. The other results from simulation also showed that; 1) an increse in the initial moisture content resulted in an increase in the drying rate and a reduction in the grain temperature and total energy requirements. 2) an increase in the drying air temperature resulted in an increase in the drying rate and grain temperature. 3) an increase in air flow rate resulted in an radical increase in drying rate, fan power requirements and total energy requirements but an radical decrease in final head rice yield. 4) an increase in the bed depth resulted in an increase in fan power requirements and a lowering of the final head rice yield.

  • PDF