• Title/Summary/Keyword: Temperature Sensitivity

Search Result 1,737, Processing Time 0.032 seconds

Fabrication and Characteristics of ZnO:In Thin Film $NH_3$ Gas Sensor (ZnO:In 박막 $NH_3$ 가스센서의 제작 및 특성)

  • Kim, Jin-Hae;Jun, Choon-Bae;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.274-282
    • /
    • 1999
  • The In doped ZnO(ZnO:In)thin films sensitive to $NH_3$ gas were prepared by the double layer depositions of In film by vacuum evaporation and ZnO film by rf magnetron sputtering method onto a $SiO_2$/Si wafer substrate, and subsequent heat treatment process. The structural and electrical characteristics of the ZnO:In thin films were studied as a function of heat treatment temperature by x-ray diffraction, scanning electron microscope and 4 point probing method. And the dependence of the sensitivity, the selectivity and the time response of the thin films on heat treatment temperature was investigated. The thin film heat-treated at $400^{\circ}C$ showed the highest sensitivity of 140% at an operating temperature of $300^{\circ}C$. The sensitivity towards CO, $NO_x$, gases observed in the same temperature.

  • PDF

A Study on the Infrared Signature of a Naval Ship under the Marine Climate (함정 표면 적외선 신호에 대한 해양기상 영향분석)

  • Kim, Yoon-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.264-272
    • /
    • 2012
  • A study on the IR(InfraRed) signature of a naval ship has been performed using well known IR signature analysis software, ShipIR/NTCS. Variations of the IR signature radiated from skins of a naval ship have been investigated according to the monthly averaged marine climate conditions. An unclassified destroyer model with and without applying the washdown system was applied to compare the influence on the signature under the background changes. The marine background models were created from the observed data by a buoy of Korea Meterological Administration(KMA). The sensitivity of the ship signature against the climate variables such as air temperature, sea temperature, relative humidity has been studied as well. The seasons which show extreme(max, min) skin signature change by whether the washdown is applied or not. The sensitivities of the air temperature and the sea temperature for a dry-ship reversed by applying the washdown on the ship surfaces.

Methane Gas Sensing Properties of the Zinc Oxide Nanowhisker-derived Gas Sensor

  • Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • A low power methane gas sensor with microheater was fabricated by silicon bulk micromachining technology. In order to heat up the sensing layer to operating temperature, a platinum (Pt) micro heater was embedded in the gas sensor. The line width and gap of the microheater was 20 ${\mu}m$ and 4.5 ${\mu}m$, respectively. Zinc oxide (ZnO) nanowhisker arrays were grown on a sensor from a ZnO seed layer using a hydrothermal method. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growing ZnO nanowhiskers. Temperature distribution of the sensor was analyzed by infrared thermal camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high (64%) sensitivity was obtained even at as low a temperature as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$, and only 25 mW at $150^{\circ}C$.

Uncertainty evaluation in electrochemical noise resistance measurement (전기화학적 노이즈 저항 측정에서의 불확도 평가)

  • Kim, Jong Jip;Kang, Su Yeon
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.

The Fabrication of a Micromachined Ceramic Thin-Film Pressure Sensor with High Overpressure Tolerance (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작)

  • Lim, Byoung-Kwon;Choi, Sung-Kyu;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097{\sim}1.21mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Gas Detecting Characteristics Using Catalytic Combustion Type Gas Sensor (접촉연소식 가스 센서를 이용한 감도특성)

  • Yoon, Hun-Ju;Ko, Keel-Young;Lee, Jong-Pil;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.773-777
    • /
    • 2002
  • In this study, we analyzed the LPG and LNG sensitivity measurement and voltage variation using catalytic type gas sensor characteristics in catalytic combustion type gas detecter sensors. gas detector shall operate as intended when exposed for 24 hours to air having a relative humidity of 0~85 percent at a temperature of $20[{\mu}m]$ and humidity of 45 percent at a temperature of $-10{\sim}40[^{\circ}C]$ the gas detecter sensors are to be subjected to operation for 210 days in an area that has been detemined to be equivalent to a typical residential atmosphere with an air velocity of 50 [cm/sec]. The source of energy for a gas detector sensors employing a supplementary basic circuit is energized from a separate source of supply direct applied voltage 2.1[V], 2.2[V], 2.3[V]. As a result, it was confirmed that the relative humidity and temperature by regression each analysis, compared to the LPG characteristic graph and methane characteristics graph by a relative humidity of 0 ~ 85 [%] at a temperature range of $-10{\sim}40[^{\circ}C]$ show a similar linear pattern on the whore.

  • PDF

Fabrication and Property of Water Level and Temperature Sensor for Medical Cooling System Using a Highly Sensitive GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 의료용 냉각기 수위 및 수온 센서의 제작과 특성)

  • Park, Kwang-Jun;Choi, Jong-Gu;Lee, Sang-Suk;Lee, Bum-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • We fabricated a sensor for measuring the water level and water temperature using GMR-SV (giant magnetoresistance-spin valve) device, simultaneously. It could be applied to the medical cooling system of the potassium titanylphosphate KTP) laser system for the therapy of a benign prostatic hyperplasia. The middle point of GMR-SV device was set to the near position of a high magnetic sensitivity with 2.8%/Oe. The sensitivity for the water level and water temperature of the fabricated sensor were $400\;m{\Omega}/mm$ and $100\;m{\Omega}/^{\circ}C$, respectively.

An Algorithm of Short-Term Load Forecasting (단기수요예측 알고리즘)

  • Song Kyung-Bin;Ha Seong-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

Read-Out Integrated Circuit of Colorimetry-Based Optical Sensor for Eutrophication Analysis (수생태계 부영양화 분석을 위한 비색법 기반의 광학식 센서 신호처리회로(ROIC)구현)

  • Koo, Seong Mo;Jung, Dong Geon;Choi, Young Chan;Kim, Kyung-Kyoo;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.270-274
    • /
    • 2020
  • In this study, a read-out integrated circuit (ROIC) that can be applied to a colorimetry-based optical sensor for analyzing total phosphorus and total nitrogen was developed and characterized. The proposed ROIC minimizes the effect on temperature fluctuation, improves sensitivity, and extends the dynamic range by utilizing a dual optical path and feedback control circuit. Using a dual optical path makes it possible to calibrate the output signal of the optical sensor automatically, along with the temperature fluctuation. The calibrated voltage is fed back into the measurement stage; thus, the output current of the measurement is adaptively controlled. As a result, the sensitivity and dynamic range of the proposed ROIC are improved. Finally, a total-phosphorus analysis was conducted by utilizing the ROIC. The ROIC was found to operate stably over a wide temperature range.

Methane sensing characteristics and power consumption of MEMS gas sensor based on ZnO nanowhiskers (ZnO 나노휘스커 소재를 이용한 MEMS가스센서의 소비전력과 메탄 감응 특성 연구)

  • Moon, Hyung-Shin;Park, Sung-Hyun;Kim, Sung-Eun;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.462-468
    • /
    • 2010
  • A low power gas sensor with microheater was fabricated by MEMS technology. In order to heat up the gas sensing material to a operating temperature, a platinum(Pt) micro heater was built on to the micromachined Si substrate. The width and gap of microheater were $20\;{\mu}m$ and $4.5\;{\mu}m$, respectively. ZnO nanowhisker arrays were fabricated on a sensor device by hydrothermal method. The sensor device was deposited with ZnO seeds using PLD systems. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growthing ZnO nanowhiskers. The power consumption to heat up the gas sensor to a operating temperature was measured and temperature distribution of sensor was analyzed by a Infrared Thermal Camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high(64 %) sensitivity was obtained even at as low as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$ and was only 25 mW at $150^{\circ}C$.