• Title/Summary/Keyword: Temperature Reduction

Search Result 4,519, Processing Time 0.034 seconds

A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine (중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구)

  • 최경호;조웅래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

Seasonal Prediction of Korean Surface Temperature in July and February Based on Arctic Sea Ice Reduction

  • Choi, Wookap;Kim, Young-Ah
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.297-306
    • /
    • 2022
  • We examined potential seasonal prediction of the Korean surface temperature using the relationships between the Arctic Sea Ice Area (SIA) in autumn and the temperature in the following July and February at 850 hPa in East Asia (EA). The Surface Air Temperature (SAT) over Korea shows a similar relationship to that for EA. Since 2007, reduction of autumn SIA has been followed by warming in Korea in July. The regional distribution shows strong correlations in the southern and eastern coastal areas of Korea. The correlations in the sea surface temperature shows the maximum values in July around the Korean Peninsula, consistent with the coastal regions in which the maximum correlations in the Korean SAT are seen. In February, the response of the SAT to the SIA is the opposite of that for the July temperature. The autumn sea ice reduction is followed by cooling over Korea in February, although the magnitude is small. Cooling in the Korean Peninsula in February may be related to planetary wave-like features. Examining the autumn Arctic sea ice variation would be helpful for seasonal prediction of the Korean surface temperature, mostly in July and somewhat in February. Particularly in July, the regression line would be useful as supplementary information for seasonal temperature prediction.

Hydrogen Plasma와 Oxygen Plasma를 이용한 50 nm 텅스텐 패턴의 Oxidation 및 Reduction에 관한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Nam, Seok-U;Min, Gyeong-Seok;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.288-288
    • /
    • 2012
  • The oxidation characteristics of tungsten line pattern during the carbon-based mask layer removal process using oxygen plasmas and the reduction characteristics of the WOx layer formed on the tungsten line surface using hydrogen plasmas have been investigated for sub-50 nm patterning processes. The surface oxidation of tungsten line during the mask layer removal process could be minimized by using a low temperature ($300^{\circ}K$) plasma processing instead of a high temperature plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WOx on the tungsten line could be decreased to 25% of WOx formed by the high temperature processing. The WOx layer could be also completely removed at the low temperature of $300^{\circ}K$ using a hydrogen plasma by supplying bias power to the tungsten substrate to provide an activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40 nm-CD device processing, the complete removal of WOx formed on the sidewall of tungsten line could be observed.

  • PDF

Low Temperature Selective Catalytic Reduction of NOx over V2O5/TiO2 Catalyst Doped with Mn (Mn이 첨가된 V2O5/TiO2 촉매상에서 질소산화물의 저온 SCR 특성)

  • Cheon, Tae Jin;Choe, Sang Gi;Choe, Seong U
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.537-542
    • /
    • 2004
  • $V_{2}O_{5}/TiO_{2}$ catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in $NH_3.$ The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and $O_2$ concentration. Among the various $V-{2}O_{5}$ catalysts having different metal loadings, $V-{2}O_{5}$(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of $200-250^{\circ}C.$ When the $V-{2}O_{5}$ catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of $100-200^{\circ}C.$ From Mn-$V_{2}O_{5}/TiO_{2}$, it was found that by addition of 5 wt.% Mn on $V_{2}O_{5}/TiO_{2}$ catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to $100^{\circ}C.$

Temperature Dependence of Efficiency Droop in GaN-based Blue Light-emitting Diodes from 20 to 80℃

  • Ryu, Guen-Hwan;Seo, Dong-Joo;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.468-473
    • /
    • 2018
  • We investigate the temperature dependence of efficiency droop in InGaN/GaN multiple-quantum-well (MQW) blue light-emitting diodes (LEDs) in the temperature range from 20 to $80^{\circ}C$. When the external quantum efficiency (EQE) and the wall-plug efficiency (WPE) of the LED sample were measured as injection current and temperature varied, the droop of EQE and WPE was found to be reduced with increasing temperature. As the temperature increased from 20 to $80^{\circ}C$, the droop ratio of EQE was decreased from 16% to 14%. This reduction in efficiency droop with temperature can be interpreted by a temperature-dependent carrier distribution in the MQWs. When the carrier distribution and radiative recombination rate in MQWs were simulated and compared for different temperatures, the carrier distribution was found to become increasingly homogeneous as the temperature increased, which is believed to partly contribute to the reduction in efficiency droop with increasing temperature.

Production of Fe-Si-Cr Ferro Alloy by Using Mixed Silicothermic and Carbothermic Reduction (실리콘 및 탄소 복합 열환원 반응을 이용한 페로실리크롬 합금철의 제조)

  • Kim, Jong Ho;Jung, Eun Jin;Lee, Go-Gi;Jung, Woo-Gwang;Yu, Seon Jun;Chang, Young Chul
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.263-269
    • /
    • 2017
  • Fe-Si-Cr ferroalloy is predominantly produced by carbothermic reduction. In this study, silicothermic and carbothermic mixed reduction of chromite ore to produce Fe-Si-Cr alloy is suggested. As reductants, silicon and silicon carbide are evaluated by thermochemical calculations, which prove that silicon carbide can be applied as a raw material. Considering the critical temperature of the change from the carbide to the metallic form of chromium, thereduction experiments were carried out. In these high temperature reactions, silicon and silicon carbide act as effective reductants to produce Fe-Si-Cr ferroalloy. However, at temperatures lower than the critical temperature, silicon carbide shows a slow reaction rate for reducing chromite ore. For the proper implementation of a commercial process that uses silicon carbide reductants, the operation temperature should be kept above the critical temperature. Using equilibrium calculations for chromite ore reduction with silicon and silicon carbide, the compositions of reacted metal and slag were successfully predicted. Therefore, the mass balance of the silicothermic and carbothermic mixed reduction of chromite ore can be proposed based on the calculations and the experimental results.

Human Detection and Fuzzy Temperature Control System for Energy Reduction of Cooling Device in Elevator (승강기용 냉각장치의 에너지 절감을 위한 사람 검출과 퍼지 온도 제어 시스템)

  • Eum, Hyukmin;Jang, Sukyoon;Lee, Heejin;Park, Mignon;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.147-154
    • /
    • 2015
  • In this paper, we propose human detection and fuzzy temperature control system for energy reduction of cooling device in elevator. In order to improve problems of existing cooling device using the refrigerant, energy reduction and efficient management are continuously achieved because of operation of thermoelectric cooling device using the human detection and fuzzy temperature control system. The proposed system confirms the number of passengers in elevator and temperature is then controlled by those numbers and an average temperature for the season in fuzzy system. The human detection method scans the number of passengers using a head part as a feature based on bird's-eye view camera in elevator. The fuzzy system determines elevator internal temperature considering atmospheric temperature and the scanned passenger numbers as a look-up table. The proposed system reduces energy of the cooling device through the human detection and temperature control. In experiment, energy reduction is confirmed and the performance of the proposed system is verified.

An Experimental Study on the Reduction of Diesel Emission Using Low Temperature Plasma Apparatus (저온 플라즈마 장치를 이용한 디젤기관의 유해배출물질 저감에 관한 실험적 연구)

  • 김홍석;원준희;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.12-19
    • /
    • 2000
  • The increasing use of vehicles is causing air-pollution problems. Diesel vehicles are preferred to gasoline vehicles, because the diesel vehicles are superior to gasoline vehicles in terms of fuel consumption, durability, power and efficiency. But the emission reduction technologies for diesel vehicle are not developed well like those for gasoline vehicles. Moreover, the NOx and smoke emitted from diesel vehicle are recognized as a main source of the air-pollution in the urban areas. The emission reduction devices have been installed for each of the emission gas components. Using plasma(i.e. electrical energy)only, the emission gas was found to be reduced. The present paper investigate the effects of a low temperature plasma device in engine performance as well as in emission reduction with the change of the applied voltage and the loading rate of the engine.

  • PDF

SNCR Application to Diesel Engine DeNOx under Combustion-driven Flow Reactor Conditions

  • Nam, Chang-Mo;Gibbs, Bernard M.
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.769-778
    • /
    • 2012
  • Diesel DeNOx experiments using the SNCR process were performed by directly injecting NH3 into a simulated engine cylinder (966 $cm^3$) for which a diesel fuelled combustion-driven flow reactor was designed by simulating diesel engine geometry, temperature profiles, aerodynamics and combustion products. A wide range of air/fuel mixtures (A/F=20~45) were combusted for oxidizing diesel flue gas conditions where an initial NOx levels were 250~900 ppm and molar ratios (${\beta}=NH_3/NOx$) ranged from 0.5~2.0 for NOx reduction tests. Effective NOx reduction occurred over a temperature range of 1100~1350 K at cylinder injections where about 34% NOx reduction was achieved with ${\beta}$=1.5 and cylinder cooling at optimum flow conditions. The effects of simulated engine cylinder and exhaust parts, initial NOx levels, molar ratios and engine speeds on NOx reduction potential are discussed following temperature gradients and diesel engine environments. A staged injection by $NH_3$ and diesel fuel additive is tested for further NOx reduction, and more discussed for practical implication.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.