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I. INTRODUCTION

Recently, the use of light-emitting diodes (LEDs) has 

considerably increased in general lighting and display 

applications, thanks to the high efficiency and eco-friend-

liness of these sources [1-3]. The peak external quantum 

efficiency (EQE) of InGaN/GaN-based blue LEDs has been 

demonstrated to be more than 80% [4]. Despite such high 

peak efficiency at relatively low current density, InGaN blue 

LEDs undergo significant efficiency droop as the current 

density increases, which could limit their use in high- 

current-driven applications [5-8]. Several mechanisms, such 

as Auger recombination [9], electron leakage [10], saturation 

of spontaneous emission rate [11], and reduction in effective 

active volume [12], have been proposed to explain the 

efficiency droop phenomenon. However, the true origin of 

the efficiency droop has not been clearly identified yet. 

In addition to this current droop, the issue of temperature- 

dependent reductions in EQE, known as thermal droop, 

has attracted increasing attention [13-16]. It is important to 

understand the mechanisms for thermal droop as well as 

for current droop in InGaN LEDs, for use in high-power, 

temperature-stable lighting applications. There have been a 

number of studies on the mechanisms of temperature- 

dependent carrier recombination in InGaN quantum wells 

(QWs) to study the thermal droop of LED efficiency 

[17-20]. These previous studies have measured temperature- 

dependent EQE curves over a wide temperature range that 

can be extended below 100 K on the low-temperature side 

or above 400 K on the high-temperature side. However, 

the temperature-dependence of efficiency droop in the 

temperature range between 20 and 80°C has not been very 

closely investigated, though most applications require LEDs 

to operate in this temperature range. 

In this paper, we experimentally investigate the 

temperature dependence of efficiency droop in (In,Ga)N 

multiple-quantum-well (MQW) blue LEDs, focusing on the 

temperature range from 20 to 80°C. It will be shown that 

the efficiency droop can be reduced as the temperature 

increases, which has not been demonstrated in previous 
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works on the temperature-dependence of LED efficiency. 

To interpret the measured temperature-dependent efficiency 

droop, the carrier distribution in InGaN MQWs is 

investigated using numerical simulation, and the role of 

carrier distribution in mitigating the problem of efficiency 

droop with increasing temperature will be discussed. 

II. EXPERIMENT

The LED epilayers were grown on a c-plane sapphire 

substrate by metal-organic chemical vapor deposition. The 

LED layer structure consisted of a Si-doped n-GaN layer, 

MQW active layers, a 15-nm-thick p-type Mg-doped 

AlGaN electron-blocking layer (EBL), and a 150-nm-thick 

Mg-doped p-GaN layer. The MQW active layers were 

composed of five 2.5-nm-thick InGaN QWs separated by 

8-nm-thick GaN barriers. The LED chip was fabricated in 

a vertical-injection structure with dimensions of 1 × 1 mm2. 

The fabricated LED chip was then encapsulated with an 

epoxy resin and packaged as a surface-mount device. The 

packaged LED sample was soldered onto a thick copper 

block, the temperature of which is controlled by a 

thermoelectric cooler (TEC). The electrical and optical 

characteristics were measured using an LED characterization 

system with a calibrated integrating sphere, as the TEC 

temperature varied from 20 to 80°C. The LED sample was 

operated under pulsed mode with a pulse width of 0.1 ms 

and duty cycle of 1%, to minimize self-heating effects. 

The light output power (LOP) and forward voltage were 

measured as the current increased to 350 mA. 

The EQE can be obtained from the measured LOP. EQE 

is defined as the ratio of the number of photons emitted 

from the LED per second to the number of electrons 

injected into the LED per second:




∫⁄
, (1)

where q, h, and c are respectively the elementary charge, 

Planck’s constant, and speed of light in vacuum. I is the 

current injected into the LED sample, and  is the wave-

length of light.   is the spectral power distribution. 

LOP (Pout) is obtained by integrating the spectral power 

distribution over wavelength:




. (2)

Using Eqs. (1) and (2), EQE can be written as 








, (3)

where   is the centroid wavelength of the emission 

spectrum, which is defined as 

≡
∫

∫





 . (4)

Figure 1(a) shows the LOP of the LED sample as a 

function of injection current, at temperatures of 20, 40, 60, 

and 80°C. LOP at 350 mA decreased from 352 to 319 

mW as the temperature increased from 20 to 80°C. Figure 

1(b) shows an EQE versus current relation (EQE curve) at 

20, 40, 60, and 80°C. For the EQE calculation using Eq. 

(3), the temperature dependence of   as well as Pout was 

taken into account.   was observed to increase from 452 

to 455 nm as the temperature increased from 20 to 80°C. 

The peak EQE was found to decrease from 56.1% to 

49.9% as the temperature increased from 20 to 80°C. The 

decrease in EQE with temperature is attributed to the 

increase in the Shockley-Read-Hall recombination rate, and 

(a) (b)

FIG. 1. (a) Light output power (LOP) of the LED sample as a function of current, at temperatures of 20, 40, 60, and 80°C. (b) External 

quantum efficiency (EQE) of the LED sample as a function of current, at temperatures of 20, 40, 60, and 80°C.
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the decrease in the radiative recombination rate, with 

increasing temperature [21, 22].

Figure 2(a) shows the EQE curves normalized to the 

peak EQE values for each temperature. The current where 

the peak EQE was obtained increased from 50 to 70 mA 

as the temperature increased from 20 to 80°C. For currents 

larger than these values, significant efficiency droop was 

observed. Interestingly, the droop of the normalized EQE 

was reduced as the temperature increased. As a measure of 

the degree of efficiency droop, the droop ratio is introduced, 

which is defined as the difference between peak EQE and 

the EQE at 350 mA, normalized to the peak EQE [23].

  
 

   
 (5)

The droop ratio of EQE for the LED sample is plotted as 

a function of temperature in Fig. 2(b). As the temperature 

increased from 20 to 80°C, the droop ratio decreased from 

0.161 to 0.141. That is, the efficiency droop problem can 

be improved to some extent as temperature increases. 

We also investigated the temperature-dependent droop of 

wall-plug efficiency (WPE). Figure 3(a) shows normalized 

WPE curves at temperatures 20, 40, 60, and 80°C. Each 

WPE curve is normalized to its peak value. The temperature 

dependence of the normalized WPE curves is similar to 

that of the normalized EQE curves in Fig. 2(a). Again, the 

normalized WPE at a given current increased as the 

temperature increased, implying that the droop in WPE 

decreased with increasing temperature. Figure 2(b) shows 

the droop ratio of WPE as a function of temperature. The 

droop ratio of WPE can be obtained from Eq. (5), by 

replacing EQW with WPE. As the temperature increased 

from 20 to 80°C, the droop ratio of WPE decreased from 

0.271 to 0.254. To our knowledge, the reduction of EQE 

droop and WPE droop with increasing temperature has not 

been reported in previous works. It is expected that 

increasing the temperature can mitigate the droop problem 

to some extent, although the overall efficiency decreases 

with increasing temperature.

(a) (b)

FIG. 2. (a) Normalized EQE as a function of current, at 20, 40, 60, and 80°C. (b) Droop ratio of EQE as a function of temperature.

(a) (b)

FIG. 3. (a) Normalized wall-plug efficiency (WPE) as a function of current, at 20, 40, 60, and 80°C. (b) Droop ratio of WPE as a 

function of temperature.
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III. SIMULATION AND DISCUSSION

To understand the origin of droop reduction with increasing 

temperature, numerical simulation of the measured LED 

sample was performed. We focused on the simulation of 

the carrier distribution in InGaN/GaN MQWs, because the 

carrier distribution is known to have an important role in 

the efficiency droop of InGaN LEDs [24-28] and can be 

strongly influenced by temperature. For the simulation, 

the semiconductor device simulation software APSYS was 

employed. This simulation program self-consistently solves 

QW band structures, radiative and nonradiative carrier 

recombination, and the carrier drift and diffusion equation 

[29]. It has been widely used for simulating device 

characteristics of GaN-based LEDs. 

In the simulation, the MQW structures were basically 

identical to those mentioned in Section II. The concentration 

of Si donors in n-GaN was 5 × 1018 cm-3, and that of Mg 

acceptors in both the EBL and the p-GaN cap layer 1 × 1019 

cm-3. In the APSYS simulation, incomplete ionization of 

Mg acceptors and the field-ionization model were included, 

and the AlGaN acceptor energy was linearly scaled from 

170 meV in p-GaN to 470 meV in p-AlN [30, 31]. The 

built-in electric fields induced by spontaneous and piezo-

electric polarizations at the heterointerfaces InGaN/GaN 

and AlGaN/GaN were also included, using the model 

described in Ref. [32]. The polarization-induced internal 

electric field was modeled by placing the surface charge 

density at the heterointerfaces. The conduction-band offset 

of In0.15Ga0.85N/In0.02Ga0.98N active layers and AlGaN/GaN 

layers was set at 0.7 [33]. The mobility model of Refs. 

[34, 35] was used for the mobility of carriers, which gave 

an electron mobility of ~500 cm2/(V s) for n-GaN with a 

doping concentration of 1 × 1018 cm-3. The hole mobility 

in the AlGaN, InGaN, and GaN layers was assumed to be 

5 cm2/(V s) [36]. In the temperature range from 20 to 

80°C, electron leakage from the MQWs to the p-GaN layer 

was not observed in the simulation. The recombination 

coefficients A, B, and C were assumed to be 1 × 107 s-1, 

2 × 10-11 cm3/s, and 2 × 10-31 cm6/s respectively [31]. In 

general, the recombination coefficients vary with temperature 

[17-20], but temperature dependence of A, B, and C was 

not included in this simulation, because the carrier and 

recombination-rate distributions in the MQWs would not 

change much with the variation of these coefficients from 

20 to 80°C.

Figure 4(a) shows the hole concentration distribution in 

InGaN MQWs at temperatures of 20, 40, 60, and 80°C. 

Here the injection current was 350 mA. At 20°C, the 

distribution of hole concentration was quite inhomogeneous, 

decreasing rapidly as hole carriers moved from the p-side 

to the n-side QW. This inhomogeneity in hole distribution 

results from inefficient hole transport through Qws, caused 

by low hole mobility [24, 25]. As the temperature increased 

from 20°C, the hole concentration distribution became 

increasingly homogeneous, due to thermally enhanced hole 

transport from the p-side to the n-side QW [37, 38]. 

Similarly, the electron concentration distribution was also 

found to become homogeneous as the temperature increased. 

Figure 4(b) shows the distribution of radiative recombination 

rate at temperatures of 20, 40, 60, and 80°C. The radiative 

recombination rate distribution also became increasingly 

homogeneous as the temperature increased, similar to the 

case of the hole distribution. As the temperature increased, 

the distribution of the radiative recombination rate was more 

homogeneous than that of the hole distribution in Fig. 4(a), 

because the radiative recombination rate is proportional to 

the product of hole and electron distributions.

As the carrier distribution or radiative recombination 

rate distribution becomes homogeneous, efficiency droop 

can be reduced. The inhomogeneous carrier distribution 

results in a large increase of the Auger recombination rate 

at p-side QWs, which enhances the efficiency droop [25, 

28]. As the temperature increases, the carrier distribution 

(a) (b)

FIG. 4. (a) Hole concentration distribution in InGaN MQWs at 20, 40, 60, and 80°C. (b) Distribution of radiative recombination rate 

in InGaN MQWs at 20, 40, 60, and 80°C.
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becomes increasingly homogeneous and the overall Auger 

recombination decreases, leading to the reduction in 

efficiency droop. Therefore, the reduced droop of EQE and 

WPE with increasing temperature shown in Figs. 2 and 3 

can be explained, at least in part, by the temperature- 

dependent carrier distribution in the MQWs. 

IV. CONCLUSION

The temperature dependence of efficiency droop in InGaN 

MQW blue LEDs was investigated in the temperature 

range from 20 to 80°C. The EQE and WPE of an LED 

sample were measured as temperature and current varied, 

and the temperature-dependent droop of these efficiencies 

was evaluated. When the efficiency curve was normalized 

to its peak value for each temperature, the droop in both 

EQE and WPE was observed to decrease as temperature 

increased. The droop ratio of EQE decreased from 16.1% 

to 14.1%, while that of WPE decreased from 27.1% to 

25.4%, as the temperature increased from 20 to 80°C. To 

interpret the measured temperature-dependent efficiency 

droop, carrier distribution and radiative recombination rate 

in the MQWs were investigated using numerical simulation, 

and compared for different temperatures. The carrier 

distribution was found to become increasingly homogeneous 

as the temperature increased, as a result of thermally 

enhanced carrier transport, which is believed to partly 

contribute to the reduction in the efficiency droop with 

increasing temperature. It was found that increasing the 

temperature could mitigate the droop problem of InGaN 

blue LEDs to some extent, despite the decrease in overall 

efficiency. We expect that the abatement of efficiency 

droop with increasing temperature can be advantageously 

used in some temperature-stable application of LEDs.
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