• Title/Summary/Keyword: Temperature Monitor

Search Result 683, Processing Time 0.026 seconds

Temporal Variation of Winter Indoor PM2.5 Concentrations in Dwellings in Ger Town of Ulaanbaatar, Mongolia (몽골 울란바토르시 게르촌 주택의 겨울철 실내 초미세먼지(PM2.5) 농도의 시간적 변이)

  • Lee, Boram;Jang, Yelim;Lee, Jiyoung;Kim, Yoonjee;Ha, Hunsung;Lee, Wooseok;Choe, Wooseok;Kim, Kyusung;Woo, Cheolwoon;Ochir, Chimedsuren;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2018
  • Objectives: In Mongolian housing, they use coal as a fuel for indoor heating and cooking. The combustion of coal releases particulate matter, which can affect indoor air quality. The purpose of this study was to analyze the concentrations of indoor $PM_{2.5}$ in winter time dwellings in ger town. Methods: In this study, indoor $PM_{2.5}$ concentrations, temperature and humidity in houses were measured by a real-time PM monitor, while the time activity patterns of the residents were also observed. Results: The correlation between factors that may affect the indoor air quality was analyzed.The indoor $PM_{2.5}$ concentrations were $178.4{\pm}152.7{\mu}g/m^3$ (n=37). Five types of indoor $PM_{2.5}$ concentrations have been classified, which were associated with indoor activity. The stove type, fuel types and indoor activities such as cleaning, cooking and opening the stoves were not significantly associated with indoor $PM_{2.5}$ levels. Conclusions: Further study is needed to determine the effect of stove type through 24hours of indoor air quality monitoring.

Performance Analysis of the Powerline Communication for Condition Monitoring System of an MW Class Offshore Wind Turbine's Nacelle (MW급 해상풍력발전기 나셀의 상태 감시를 위한 전력선 통신 성능 분석)

  • Sohn, Kyung-Rak;Kim, Kyoung-Hwa;Jeong, Seong-Uk;Nam, Seung-Yun;Kim, Hyun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.3
    • /
    • pp.159-164
    • /
    • 2016
  • The goal of this study is to implement a communication system that can monitor the status of the nacelle using the power cable itself, without the dedicated communication lines such as an UTP cable and optical fiber for the offshore wind turbine. An inductive coupling powerline communication system for a MW class offshore wind turbine was proposed and its communication performance was demonstrated. The inductive couplers was designed for operation at up to 500 A using a ferrite composite materials. Field test was carried out on the wind farms of Jeju island. Using the iperf communication test program, we have obtained more than 15 Mbps data transmission rate through the 100 m power cable that was installed between the nacelle and the bottom of the power converter. In the data transmission stability test for a week, there was no failure ever. The minimum transmission rate was 15 Mbps and the average data rate was about 20 Mbps. Next, we have installed an infrared camera inside the nacelle in order to measure the temperature distribution and variation of the nacelle. The real-time thermal image taken by the camera was successfully sent to the monitoring system without error.

Development of a Prototype Patient Monitoring System with Module-Based Bedside Units and Central Stations: Overall Architecture and Specifications (모듈형 환자감시기와 중앙 환자감시기로 구성되는 환자감시시스템 시제품의 개발: 전체구조 및 사양)

  • Woo, E.J.;Park, S.H.;Jun, B.M.;Moon, C.W.;Lee, H.C.;Kim, S.T.;Kim, H.J.;Seo, J.J.;Chae, K.M.;Park, J.C.;Choi, K.H.;Lee, W.J.;Kim, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.315-319
    • /
    • 1996
  • We have developed a prototype patient monitoring system including module-based bedside units, interbed network, and central stations. A bedside unit consists of a color monitor and a main CPU unit with peripherals including a module controller. It can also include up to 3 module cases and 21 different modules. In addition to the 3-channel recorder module, six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmogaph are provided as parameter modules. Modules and a module controller communicate with up to 1Mbps data rate through an intrabed network based on RS-485 and HDLC protocol. Bedside units can display up to 12 channels of waveforms with any related numeric informations simultaneously. At the same time, it communicates with other bedside units and central stations through interbed network based on 10Mbps Ethernet and TCP/IP protocol. Software far bedside units and central stations fully utilizes gaphical user interface techniques and all functions are controlled by a rotate/push button on bedside unit and a mouse on central station. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances. In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we are developing a relational database server dedicated to the patient monitoring system. We are also developing a clinical workstation with which physicians can review and examine the data from patients through various kinds of computer networks far diagnosis and report generation. Portable bedside units with LCD display and wired or wireless data communication capability will be developed in the near future. New parameter modules including cardiac output, capnograph, and other gas analysis functions will be added.

  • PDF

A Study on the Real-Time Oil-Spill Monitoring Technology (실시간 기름유출 모니터링 기술에 관한 연구)

  • Yeom, Woo-jung;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.472-477
    • /
    • 2017
  • Oil spills cause a lot of damage to the environment. Oil destroys the water environment and ecosystem in a very short period of time once they are contaminated by it, it takes a lot of time to recover from the contamination and the cleaning process is very difficult. Therefore, oil detectors are greatly needed as they can monitor any oil spills over the sea, rivers, and lakes. There are two kinds of technology available for detecting oil, viz. the contact and non-contact types. The former is based on the use of the conductivity, capacitance and microwaves, while the latter employs infrared, UV, laser, optic and radar technologies. As there are also various hurdles in the measuring of oil on water, such as the presence of waves, refraction of light, temperature and saltiness, it is imperative to select the right oil detector which is appropriate for the specific environment. In this study, a contact type oil detector is developed, which can be used in oil related industries, such as refineries, petrochemical companies, and power generation stations. The detector is made up of the sensor module, which floats on the water, and the controller which processes the signal coming from the sensor module and displays it. It is designed in such a way that the existence of oil is detected through the sensor and the change in the permittivity is observed to determine the volume and type of spilled oil.

A Study on Red Tide Monitoring system using Wireless Sensor Network (무선센서네트워크를 이용한 적조모니터링 시스템 구축을 위한 연구)

  • Min Heo;Mo Soo-Jong;Yim Jae-Hong;Kim Ki-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.489-492
    • /
    • 2006
  • Red tide occurred sporadically in early 90s. But It is happening extensively by global warming. So, Airline observation, Red tide buoy development, and Red tide alarm system research is progressing for monitor ring. However, study to early forecast red tide and red tide alarm system did not exist hard. This paper proposed development that design and implementation red tide database of using wireless sensor network. There are GPS, Water Temperature sensor, Oxygen sensor, and Turbidity sensor in each node. And data is stored to red tide database through Ad-hoc network. This data is integrated and analyzed. So, forecast red tide. And red tide database has red tide data that happen at past. This is utilized to comparative analysis data for red tide estimate. Main screen displays position of node and measured value in electron map. Much studies must be backed for this a study. But I think that contribute to analyze red tide data by red tide database construction.

  • PDF

Development of Bioelectric Signal Sensor System using Band Type ECG (밴드형 심전도 생체신호 전극시스템의 구현)

  • Kang Sung-Chul;Kim Gi-Ryon;Kim Kwang-Nyeon;Jung Dong-Keun;Kim Min-Sung;Jeong Do-Wun;Jeon Gye-Rok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1023-1026
    • /
    • 2006
  • There are some cases in trouble with monitoring emergency patient by existing electrode sensor in measuring instrument in home and hospital etc. And there are problem to measure because of coming down electrode in emergency car or vessel of shaking and fat, humidity of patient. In this study, it has designed band-type for patient to put on the breast easily and go around anywhere freely putting band electrode on his body. Gold has used as electrode material in this electrocardiogram because of its excellent electronic resistance peculiarity and no trouble with skin. And it is able to monitor multi-body-signal by additional design of periphery temperature. There are good results of body signal transmission in the breast or the rib, and get a little body signal in abdomen. We get a result it is better case of gold than usual electrode on signal detection, and know usual electrode was disposable, but we have more correct result from gold electrode sensor, being semi-permanent ana. great contact ability even if movement.

  • PDF

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

A Indoor Management System using Raspberry Pi (라즈베리 파이를 이용한 실내관리 시스템)

  • Jeong, Soo;Lee, Jong Jin;Jung, Won Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • In the era of the Internet of Things, where all physical objects are connected to the Internet, we suggest a remote control system using a Raspberry Pi single-board computer with ZigBee, which can turn an indoor light-emitting diode (LED) and a multiple-tap on and off, and with a smart phone can control the brightness of the LED as well as an electronic door lock. By connecting an infrared (IR) transmitter module to the Raspberry Pi, we can control home appliances, such as an air conditioner, and we can also monitor indoor images, indoor temperatures, and illumination by using a smart phone app. We developed a method of finding out IR transmission codes required for remote-controllable appliances with an AVR micro-controller. We suggest a method to remotely open and shut an office door by novating the door lock. The brightness level of an LED (between 0 and 10) can be controlled through a PWM signal generated by an ATmega88 microcontroller. A mutiple-tap is controlled using an ATmega32, a photo-coupler, and a TRIAC. The signals for measured temperature and illumination are converted from analog to digital by using the ATtiny44A microcontroller transmitting to a Raspberry Pi through SPI communication. Then, we connect a camera to the CSI head of the Raspberry Pi. We can turn on the smart multiple-tap for a certain period of time, or we can schedule the multi-tap to turn on at a specific time. To reduce standby power, people usually pull out a power code from multiple-taps or turn off a switch. Our method helps people do the same thing with a smart phone, if they are away from home.

RADARSAT SAR Investigations of Lineament and Spring Water in Cheju Island (RADARSAT SAR 자료를 이용한 제주도 선구조 연구 및 용천 특성 연구)

  • 원중선;류주형;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.325-342
    • /
    • 1998
  • Two RADARSAT SAR images with different modes acquired by Canadian Space Agency to test the effectiveness of geological lineament extraction and spring water detection over the Cheju Island. Geological lineaments are poorly developed this basalt dominant volcanic island, but more linear features can be extracted when SAR and TM images are simultaneously analyzed than when TM image alone is used. This results mainly owe to the facts that RADARSAT SAR systems are able to provide data with different frequencies, azimuth, and incidence angles. Distribution of spring water along coast is poorly correlated with geological lineaments or drainage pattern, but those in middle range of mountain region are developed along geological lineaments. Detection of spring water using remotely sensed images are turned out to be very difficult to achieve. Radial shaped sea surface temperature anomaly derived from TM thermal band should be the best candidate for spring water, but the resolution is not high enough. We also investigate the normalized radar cross section (or sigma naught) converted from RADARSAT and ERS-1 SAR data but to discriminate the spring water effectively except where relatively large water mass is observed on land side. Speckle noise and irregularity in physical sea surface condition are the serious obstacles for this application. ERS-1 SAR image acquired in low incidence angle was more useful for geological lineament estimation and water body study than RADARSAT SAR images with high incidence angles. Therefore the selection of incidence angle is critical in geological and spring water applications of SAR images, and low incidence angles less than about 30$^{\circ}$ are recommended to monitor the Cheju volcanic island.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.