• Title/Summary/Keyword: Temperature Monitor

Search Result 683, Processing Time 0.032 seconds

Heat transfer monitoring between quenched high-temperature superconducting coated conductors and liquid nitrogen

  • Rubeli, Thomas;Colangelo, Daniele;Dutoit, Bertrand;Vojenciak, Michal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.10-13
    • /
    • 2015
  • High-temperature superconducting coated conductors (HTS-CCs) are good candidates for resistive superconducting fault current limiter (RSFCL) applications. However, the high current density they can carry and their low thermal diffusivity expose them to the risk of thermal instability. In order to find the best compromise between stability and cost, it is important to study the heat transfer between HTS-CCs and the liquid nitrogen ($LN_2$) bath. This paper presents an experimental method to monitor in real-time the temperature of a quenched HTS-CC during a current pulse. The current and the associated voltage are measured, giving a precise knowledge of the amount of energy dissipated in the tape. These values are compared with an adiabatic numerical thermal model which takes into account heat capacity temperature dependence of the stabilizer and substrate. The result is a precise estimation of the heat transfer to the liquid nitrogen bath at each time step. Measurements were taken on a bare tape and have been repeated using increasing $Kapton^{(R)}$ insulation layers. The different heat exchange regimes can be clearly identified. This experimental method enables us to characterize the recooling process after a quench. Finally, suggestions are done to reduce the temperature increase of the tape, at a rated current and given limitation time, using different thermal insulation thicknesses.

Effects of Environmental Characteristics on the Production of Shellfish in Deukryang Bay, Korea (득량만의 조개류 생산량과 환경요인 관계 분석)

  • Cho, Eun-Seob;Lim, Weol-Ae;Hwang, Jae-Dong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1243-1263
    • /
    • 2011
  • This study was carried out to determine marine environments and phytoplankton community in Deukryang Bay during the period of summer in 1987-2010. Water temperature, salinity, pH and dissolved oxygen were shown in much yearly fluctuations. In August, water temperatures in surface and on bottom were the highest, compared with average surface (24.54$^{\circ}C$) and bottom (22.90$^{\circ}C$) water temperature for 18 years in Deukryang Bay. The main reason is assumed to longer duration of sunshine during the period of August. Although the amount of the rainfall in August was the highest, significant impact of marine environment did not show. Most of dissolved inorganic nitrogen and phosphate in Deukryang were lower concentration during summer and N:P ratio also showed below 18 in Redfield. In particular, extreme increasing of N:P ratio in August was occurred by intensive precipitation. Distribution of phytoplankton community was a consistent occurrence for 18 years. The genus of Chaetoceros, Cosinodisucs and Skeletonema were regarded as the represent diatom, whereas the highest occurrence of genus among dinofagellates was Ceratium. It is thought that the relationship between phytoplankton and nutrient has a strong positive signal, although nutrients persist a little concentration and much fluctuations in marine environments were observed. High availability in phytoplankton is contributed to consistently provide the food organism of shellfish. Consequently, recent decreasing production of shellfish and seed are probably associated with higher temperature during the period of summer. However, higher temperature is also occurred ago and after 2000. On the basis of geography, Deukryang Bay had a small mouth and long channel, which is attributed to decreasing genetic diversity. It is assumed that higher temperature and lower genetic diversity have a extreme impact of larvae and shellfish for reproduction in Deukryang. It is necessary to persistently monitor based on water quality and phytoplankton community.

Trend Analysis of GPS Precipitable Water Vapor Above South Korea Over the Last 10 Years

  • Sohn, Dong-Hyo;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2010
  • We analyzed global positioning system (GPS)-derived precipitable water vapor (PWV) trends of the Korea Astronomy and Space Science Institute 5 stations (Seoul, Daejeon, Mokpo, Milyang, Sokcho) where Korea Meteorological Administration meteorological data can be obtained at the same place. In the least squares analysis, the GPS PWV time series showed consistent positive trends (0.11 mm/year) over South Korea from 2000 to 2009. The annual increase of GPS PWV was comparable with the 0.17 mm/year and 0.02 mm/year from the National Center for Atmospheric Research Earth Observing Laboratory and Atmospheric InfraRed Sounder, respectively. For seasonal analysis, the increasing tendency was found by 0.05 mm/year, 0.16 mm/year, 0.04 mm/year in spring (March-May), summer (June-August) and winter (December-February), respectively. However, a negative trend (-0.14 mm/year) was seen in autumn (September-November). We examined the relationship between GPS PWV and temperature which is the one of the climatic elements. Two elements trends increased during the same period and the correlation coefficient was about 0.8. Also, we found the temperature rise has increased more GPS PWV and observed a stronger positive trend in summer than in winter. This is characterized by hot humid summer and cold dry winter of Korea climate and depending on the amount of water vapor the air contains at a certain temperature. In addition, it is assumed that GPS PWV positive trend is caused by increasing amount of saturated water vapor due to temperature rise in the Korean Peninsula. In the future, we plan to verify GPS PWV effectiveness as a tool to monitor changes in precipitable water through cause analysis of seasonal trends and indepth/long-term comparative analysis between GPS PWV and other climatic elements.

Microbiological Hazard Analysis of Cooked Foods Donated to Foodbank (II) (푸드뱅크 기탁 조리식품의 미생물학적 위해분석 (II))

  • Park, Hyeong-Su;Ryu, Gyeong
    • Journal of the Korean Dietetic Association
    • /
    • v.13 no.4
    • /
    • pp.389-406
    • /
    • 2007
  • This study was conducted to estimate the safety level of non-cooking and cooking processed foods to propose the sanitary management of foods donated to foodbanks. The time and temperature were measured and the microbial levels of aerobic plate counts (APC), coliforms, E. coli, Salmonella spp., S. aureus, B. cereus, and E. coli O157:H7 were analyzed on ten food items donated to seven foodbanks. The amount of cooked foods donated to each foodbank was about 10 to 40 servings. All foodbanks hired a supervisor and had at least one refrigerator/freezer and one temperature-controlled vehicle, but only four foodbanks had the separate offices to manage the foodbank operation. The flow of donated foods was gone through the steps; production, meal service and holding at donator, collection by foodbank, transport (or holding after transport) and distribution to recipients. After production, the levels of APC of both non-cooking and cooking processed foods were complied with the standards by Ministry of Education & Human Resources Development, and were not increased till distribution. Only the level of coliforms in dried squid & cucumber salad (1.5×$10^3$ CFU/g) was not met the standards. E. coli and other pathogens were not detected in all tested samples. The microbial levels of delivery vessels and work tables were satisfactory, but the APC levels of two of four tested serving tables (6.9×$10^3$ and 5.3×$10^3$ CFU/100$cm^2$) and the coliforms level of one (1.1×$10^3$ CFU/100$cm^2$) were over the standards. The air-borne microflora level in serving room was estimated as satisfactory. It took about 3.0 to 6.5 hours from after-production to distribution and the temperatures of donated foods were exposed mostly to temperature danger zone, which had a high potential of microbial growth. These results imply that a checklist to monitor time and temperature in each step should be provided and the employees involving foodbank operation should be properly educated to ensure the safety of donated foods.

  • PDF

Effect of Temperature on Water Quality Improvement of Natural Plant-Mineral Composites (PMC) in a Eutrophic Lake, Lake Shingal, Korea (부영양 신갈지에서 천연물질 혼합제(PMC)의 수질개선능: 현장수온의 영향)

  • Byun, Jung-Hwan;Hwang, Su-Ok;Mun, Sun-Ki;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.225-233
    • /
    • 2013
  • We examined the effect of different field temperatures on water quality improvement (WQI) of natural domestic plant-mineral composites (PMCs). This method was previously used by Kim et al. (2011), to monitor the restoration of water quality of a eutrophic lake, Lake Shingal (Korea). Results indicate that PMCs on phytoplankton, BOD and phosphorus showed more than 70% WQI below $20^{\circ}C$, and less than 40% WQI over $25^{\circ}C$, respectively. The WQIs of PMCs on blue-green algae were gradually decreased with the increase of temperature, whilst diatoms exhibited more than 90% higher WQIs, regardless of water temperature. Additionally, the WQIs on bacterial biomass and total nitrogen were low at all temperatures. These results collectively indicate that water quality improvement activity of plant-mineral composites was dependent on the water temperature, and that the field application of above chemical during temperatures over $25^{\circ}C$, would be less effective in treating a cyanobacteria bloom dominated by Microcystis aeruginosa, than by diatoms.

System Implementation for Dew Condensation Prevention of Distributing Boards based on the Dew Point (이슬 결로점 기반 수배전반 결로 방지 장치 제작)

  • Kim, Tae-Myoung;Jee, Suk-Kun;Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.645-650
    • /
    • 2018
  • IT-based automatic controller that control the temperature and humidity to prevent dew condensation of distributing board was designed and implemented in this paper. The dew condensation temperature was deduced from room temperature and humidity of distributing board. Based on the comparisons between the deduced dew condensation temperature and the temperature of surface condensation, the facilities that can prevent the condensation was implemented to be operated in due order. Also, the remote monitoring module to monitor operation status of controller was implemented using LoRa technique. The performances for controller operation and data transmission were validated from the transmission and operation test for dew condensation prevention. The controller can be put to good use at the facilities that requires the condensation prevention.

Optimization on Preparation Conditions of Dried Citrus (건조 감귤의 제조조건 최적화)

  • 이기동;윤성란
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1297-1301
    • /
    • 2003
  • The response surface methodology was peformed by central composite design based on drying temperature and time of Citrus, to monitor quality property change caused by drying and make dried products with a good overall palatability. In result, water activity, hardness and softness were affected by drying temperature; water activity decreased and hardness increased with increase of drying temperature. Softness was also high at low temperature and short time of drying. In the range of overall palatability having high score, hardness was shown in 2.01 ∼ 3.20${\times}$10$^{6}$ dyn/$\textrm{cm}^2$ and softness was 62.54 ∼ 146.37 cm/kg. Drying conditions satisfying this range were predicted as 66 ∼ 75$^{\circ}C$ of drying temperature and 8 ∼ 14 hr of drying time.

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

Estimation of Water Quality of Fish Farms using Multivariate Statistical Analysis

  • Ceong, Hee-Taek;Kim, Hae-Ran
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.475-482
    • /
    • 2011
  • In this research, we have attempted to estimate the water quality of fish farms in terms of parameters such as water temperature, dissolved oxygen, pH, and salinity by employing observational data obtained from a coastal ocean observatory of a national institution located close to the fish farm. We requested and received marine data comprising nine factors including water temperature from Korea Hydrographic and Oceanographic Administration. For verifying our results, we also established an experimental fish farm in which we directly placed the sensor module of an optical mode, YSI-6920V2, used for self-cleaning inside fish tanks and used the data measured and recorded by a environment monitoring system that was communicating serially with the sensor module. We investigated the differences in water temperature and salinity among three areas - Goheung Balpo, Yeosu Odongdo, and the experimental fish farm, Keumho. Water temperature did not exhibit significant differences but there was a difference in salinity (significance <5%). Further, multiple regression analysis was performed to estimate the water quality of the fish farm at Keumho based on the data of Goheung Balpo. The water temperature and dissolved-oxygen estimations had multiple regression linear relationships with coefficients of determination of 98% and 89%, respectively. However, in the case of the pH and salinity estimated using the oceanic environment with nine factors, the adjusted coefficient of determination was very low at less than 10%, and it was therefore difficult to predict the values. We plotted the predicted and measured values by employing the estimated regression equation and found them to fit very well; the values were close to the regression line. We have demonstrated that if statistical model equations that fit well are used, the expense of fish-farm sensor and system installations, maintenances, and repairs, which is a major issue with existing environmental information monitoring systems of marine farming areas, can be reduced, thereby making it easier for fish farmers to monitor aquaculture and mariculture environments.

Influencing Factors that Affect the Biological Monitoring of Workers Exposed to N,N-Dimethylformamide in Textile Coating Factories (섬유코팅업종사 근로자에서 디메틸포름아미드의 폭로에 의한 생물학적 모니터링에 영향을 미치는 인자)

  • Chung, In-Sung;Kim, Jong-Ghan;Choi, Sang-Kug;Bae, Jong-Youn;Lee, Mi-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.2
    • /
    • pp.171-176
    • /
    • 2006
  • Objectives : The objective of this study is to assess the factors influencing biological monitoring of textile coating factory workers exposed to N,N-dimethylformamide(DMF). Methods : We studied 35 workers who were occupationally exposed to DMF from 9 textile coating factories. The study was carried out in two phases; summer and winter. While air concentration of DMF, temperature and humidity were assessed in order to monitor the atmospheric conditions, biological monitoring was done to determine the internal dose by analyzing the N-methylformamide(NMF) collected from urine at the beginning and end of the shift. Questionnaires and medical surveillance were also obtained during the two phases. Results : Median air concentrations of DMF in winter and summer were 1.85 ppm and 2.78 ppm respectively. Also the difference between the urinary NMF concentration at the beginning and end of the shift $({\Delta}NMF)$ was always significant in each season (P < 0.001). The correlations between log DMF in air, log end-of-shift urinary NMF (r=0.555, P < 0.001) and log ${\Delta}NMF$ (r = 0.444, P < 0.001) was statistically significant in summer. The temperature, humidity, a shift system and different styles of clothing worn were significantly different during the two phases. In a multivariate analysis, temperature and the concentration of DMF in the air were the main factors influencing biological monitoring of textile coating factory workers. Conclusions : Concerning more comprehensive prevention measures to reduce exposure for those workers occupationally exposed to DMF, dermal exposure conditions such as temperature and humidity together with the air concentration of DMF should be assessed and biological monitoring is necessary to reduce adverse health effects, especially during the summer.