• Title/Summary/Keyword: Temperature Monitor

Search Result 683, Processing Time 0.024 seconds

Fabrication of Optical Sheet for LED Lighting with Integrated Environment Monitoring Sensors (환경모니터링 센서가 집적된 LED 조명용 광학시트 제작)

  • Choi, Yong Joon;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we developed an optical sheet for LED lighting with integrated $CO_2$ gas and temperature sensor which can monitor at the indoor environment. The optical sheet for LED lighting is fabricated through PMMA(Polymethyl methacrylate) injection process using mold. This research enables to fabricate the reflective sheet, light-guide plate and the prism sheet in a optical sheet. The fabricated sheet demonstrates higher intensity of optical efficiency compared with single-sided sheets. The $CO_2$ sensor was fabricated using NDIR(NON-Dispersive Infrared) method and it has $0.0235mV/V{\cdot}PPM$ sensitivity. The temperature sensor was fabricated using RTD(Resistance temperature detector) method and it has $0.563{\Omega}/^{\circ}C $sensitivity.

The Analysis of the Residual Stress and Bending Characteristics on the Heterogeneous Materials by Laser Welding (레이저 용접에 의한 이종재료의 잔류응력과 굽힘 특성 분석)

  • 오세헌;민택기
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.45-49
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is hi-metallic system made of heterogeneous metals and these springs are bonded by laser welding. But laser welding induces a non-uniform temperature distribution, and residual stress is yielded locally by these temperature deviation. Therefore, this study measures the curvature constant to assess functions of the compensation spring of shadow mask with respect to increment temperature and estimates the effect of residual stress on the performance of tri-metal used to compensation spring.

Real-time Detection and Response System for Electric Vehicle Battery Thermal Runaway in an Indoor Charging Environment (실내 충전 환경에서 전기차 배터리 열폭주 실시간 감지 및 대응 시스템)

  • Jong Hwan Moon;Min Hyuk Yoon;DaeKi Hong;DaeWon Moon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.91-95
    • /
    • 2024
  • This paper proposes a system that utilizes the Micro Controller Unit to detect and effectively respond to thermal runaway events that may occur during electric vehicle battery charging. Thermal runaway refers to a rapid fire hazard caused by the increase in internal battery temperature, which can be particularly catastrophic in indoor charging environments. The proposed system is equipped with real-time temperature sensors and communication modules to monitor battery temperature changes. When a fire is detected, the system automatically moves the battery to a fire suppression area to extinguish the fire. Finally, a prototype was developed, and the system's functionality was verified through simulations of fire scenarios.

  • PDF

Temperature Characteristics of the Modified GAC by Microwave Irradiation and Benzene Adsorption (마이크로파 조사에 따른 개질화 활성탄의 온도특성 및 벤젠흡착)

  • Choi Sung-Woo;Kim Yoon-Kab
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.579-586
    • /
    • 2006
  • The purposes of this paper were to monitor the temperature rising courses and spark discharge of the modified granular activated carbon (GAC) by microwave (MW) irradiation and to evaluate absorption of benzene. The GAC coated on $SiO_2$, boron, talc, ferrite was named as the modified GAC. Thermal and spark discharge measurement of virgin GAC and modifed GAC has been carried out using a MW device operating at 2450 MHz under various energy conditions. The results of this paper as follows. First, the modified GAC is more efficient than the virgin GAC in temperature control. Temperature gradient of the modified GAC is more lower than that of virgin GAC. The temperature gradient of GAC was observed in the following order : virgin GAC, Mn-Zn ferrite/GAC, Ni-Zn ferrite,/GAC, $SiO_2/GAC$, Boron/GAC, Talc/GAC. Second, the spark discharge of the modified GAC was diminished, compared with that of virgin GAC. Because of its excellent electrical insulating properties, the coating material prevents the spark discharge. Finally, the benzene adsorption capacity of the modified GAC decreased due to diminishing of adsorption site by the coating material. Considering the temperature gradient and spark discharge of GAC, the GAC coated $SiO_2$ would be appropriate absorbent under irradiation of MW.

Evaluation of Erythrocyte Morphometric Indices in Juvenile Red Spotted Grouper, Epinephelus akaara under Elevated Water Temperature

  • Rahman, Md Mofizur;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2019
  • Higher thermal exposure can influence the blood cell morphology and count. Hence, based on the previous results (Rahman et al., 2019), the present study evaluated the morphometric indices of erythrocytes and their nucleus under different water temperatures (25℃, 28℃, 31℃, and 34℃) to investigate their use as an indicator of thermal stress in red spotted grouper, Epinephelus akaara. 180 healthy specimens of E. akaara were exposed to four temperature conditions (25℃ as control, 28℃, 31℃, and 34℃) for 42 days, following 2 weeks of acclimation at 25℃. Erythrocyte major axis (EL), erythrocyte minor axis (EW), nucleus major axis (NL), and nucleus minor axis (NW) were examined from the blood smears on each sampling day (i.e., 2, 7, and 42 days of thermal exposure). EL and NL were significantly decreased, whereas EW and NW were increased at higher water temperature (31℃ and 34℃). The major-minor axis proportions of erythrocytes and their nucleus (EL/EW; NL/NW) were decreased with increasing water temperature (31℃ and 34℃). The strong relationships were observed among the morphometric indices of erythrocytes and their nucleus, especially in EL vs. NL and EW vs. NW. This study reveals that elevated water temperature (31℃ and 34℃) can influence the major and minor axis morphometry of erythrocytes and their nucleus in red spotted grouper. These indices may be used as stress indicators to monitor the health status of E. akaara and probably for other fish species.

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan;Qiao Huang;Yuan Ren;Qiaowei Ye;Weijie Chang;Yichao Wang
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.

Determining the Effect of Green Spaces on Urban Heat Distribution Using Satellite Imagery

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Byun, Woo-Hyuk
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.127-135
    • /
    • 2012
  • Urbanization has led to a reduction in green spaces and thus transformed the spatial pattern of urban land use. An increase in air temperature directly affects forest vegetation, phenology, and biodiversity in urban areas. In this paper, we analyze the changing land use patterns and urban heat distribution (UHD) in Seoul on the basis of a spatial assessment. It is necessary to monitor and assess the functions of green spaces in order to understand the changes in the green space. In addition, we estimated the influence of green space on urban temperature using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery and climatic data. Results of the assessment showed that UHD differences cause differences in temperature variation and the spatial extent of temperature reducing effects due to urban green space. The ratio of urban heat area to green space cooling area increases rapidly with increasing distance from a green space boundary. This shows that urban green space plays an important role for mitigating urban heating in central areas. This study demonstrated the importance of green space by characterizing the spatiotemporal variations in temperature associated with urban green spaces.

VARIATIONS IN THE SOYA WARM CURRENT OBSERVED BY HF OCEAN RADAR, COASTAL TIDE GAUGES AND SATELLITE ALTIMETRY

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Shirasawa, Kunio;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.17-20
    • /
    • 2006
  • Three HF ocean radar stations were installed at the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current. The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and $5^{\circ}$, respectively. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and short-term variations of the Soya Warm Current. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m $s^{-1}$, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  • PDF

A Development of Surface Temperature Monitoring System for Underground Tunnel Cable Joint using Wireless Sensor (무선센서를 이용한 지하전력구의 케이블 접속함 표면온도감시시스템 개발)

  • Kim, Young-Il;Song, Jae-Ju;Shin, Jin-Ho;Yi, Bong-Jae;Cho, Seon-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1879-1884
    • /
    • 2007
  • In the electric power industry, it is important that the supply of energy must be guaranteed. Many power utilities control and supervise the transmission line to avoid power failures. In case of underground tunnel, some troubles are reported in cable joint. To stabilize the power, it is needed to monitor the cable joint. Many researches of cable joint monitoring have been going on by partial discharge measurement and temperature measurement using optical cable. These methods need much cost to install and maintain, so it is only used in critical transmission line. In this research, we use wireless sensor technology, because of its low cost and easy installation. We develop the temperature monitoring system for cable joint. Temperature sensor is installed on the surface of cable joint and sends data to server through router node using wireless network. Generally Ad hoc routing is searched in wireless network. However, in this research, we design the static linear routing mechanism, which is suitable for electric power line monitoring and analyze the life time of the sensor node by measuring the amount of the battery consumption.

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.