• Title/Summary/Keyword: Temperature Moisture Sensor

Search Result 50, Processing Time 0.028 seconds

NiOx-based hole injection layer for organic light-emitting diodes (유기발광소자에 적용 가능한 NiOx 기반의 정공주입층 연구)

  • Kim, Junmo;Gim, Yejin;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.309-313
    • /
    • 2021
  • Organic semiconductors have received tremendous attention for their research because of their tunable electrical and optical properties that can be achieved by changing their molecular structure. However, organic materials are inherently unstable in the presence of oxygen and moisture. Therefore, it is necessary to develop moisture and air stable semiconducting materials that can replace conventional organic semiconductors. In this study, we developed a NiOx thin film through a solution process. The electrical characteristics of the NiOx thin film, depending on the thermal annealing temperature and UV-ozone treatment, were determined by applying them to the hole injection layer of an organic light-emitting diode. A high annealing temperature of 500 ℃ and UV-ozone treatment enhanced the conductivity of the NiOx thin films. The optimized NiOx exhibited beneficial hole injection properties comparable those of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), a conventional organic hole injection layer. As a result, both devices exhibited similar power efficiencies and the comparable electroluminescent spectra. We believe that NiOx could be a potential solution which can provide robustness to conventional organic semiconductors.

The Electrical Characteristics of $(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ Humidity-Sensitive Devices ($(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ 감습소자의 전기적 특성)

  • Yuk, Jae-Ho;Lee, Duck-Chool
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 1996
  • $(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ humidity-sensitive devices were fabricated by a solid reaction method, and their electrical properties were investigated. The specimens exhibited good humidity sensitivity, in which the impedance changes linearly. It is shown that electrical conduction with moisture adsorption is dominated by the ions through characteristics of charging and discharing current, and electrical conductivity increases as rasing the temperature and relative humidity. It is realized that relative permittivity increases and activation energy decreases with increasing relative humidity.

  • PDF

Design and Simulation of RFID Tag for Container-Grown Seedlings System

  • Lee, Sang-Hyun;Kim, Kyu-Ha;Jeong, Byeong-Su
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.292-299
    • /
    • 2022
  • In precision agriculture (PA), the differences of the agriculture related parameters such as temperature, humidity, soil moisture among different fields are considered and analyzed to precisely utilize water, pesticides, fertilizer, seeds, etc. in fields. Hence, it becomes possible to increase the profit, reduce waste and maintain quality products. This paper suggests a framework for RFID sensor network in view of PA, especially, associated with Container-grown seedlings(CGS), and presents the analysis and simulation by using Ultra High Frequency (UHF) RFID tag system. The simulation is divided into the transmitter and receiver part using Matlab/Simulink. The architecture of the model is flexible to achieve different modulation and encoding types. Finally, some results of the simulation are presents.

A Study on Moisture Adsorption Capacity by Charcoals (숯의 수분 흡착성능 연구)

  • Kim, Dae Wan;An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon;Lee, Young Seak
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.377-385
    • /
    • 2022
  • Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.

The Effect of Highland Weather and Soil Information on the Prediction of Chinese Cabbage Weight (기상 및 토양정보가 고랭지배추 단수예측에 미치는 영향)

  • Kwon, Taeyong;Kim, Rae Yong;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.701-707
    • /
    • 2019
  • Highland farming is agriculture that takes place 400 m above sea level and typically involves both low temperatures and long sunshine hours. Most highland Chinese cabbages are harvested in the Gangwon province. The Ubiquitous Sensor Network (USN) has been deployed to observe Chinese cabbages growth because of the lack of installed weather stations in the highlands. Five representative Chinese cabbage cultivation spots were selected for USN and meteorological data collection between 2015 and 2017. The purpose of this study is to develop a weight prediction model for Chinese cabbages using the meteorological and growth data that were collected one week prior. Both a regression and random forest model were considered for this study, with the regression assumptions being satisfied. The Root Mean Square Error (RMSE) was used to evaluate the predictive performance of the models. The variables influencing the weight of cabbage were the number of cabbage leaves, wind speed, precipitation and soil electrical conductivity in the regression model. In the random forest model, cabbage width, the number of cabbage leaves, soil temperature, precipitation, temperature, soil moisture at a depth of 30 cm, cabbage leaf width, soil electrical conductivity, humidity, and cabbage leaf length were screened. The RMSE of the random forest model was 265.478, a value that was relatively lower than that of the regression model (404.493); this is because the random forest model could explain nonlinearity.

Acquisition and Analysis of Environmental Data for Smart Farm (스마트팜 생육환경 데이터 획득 및 분석)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.130-137
    • /
    • 2023
  • Smart farms, which have been receiving attention as a solution to recent rural problems, refer to technologies that optimize the growing environment of crops and increase the productivity and quality of crops through efficient management. If the relationships between environmental data in smart farms are analyzed, additional productivity enhancement and crop management will be possible. In this paper, we propose a method for acquiring and analyzing nine environmental data, including temperature, humidity, CO2, soil temperature, soil moisture, insolation, soil EC, EC, and pH. Data acquisition is done through RS-485 communication between the main board and the sensor board and stored in the database after acquisition. The stored data is downloaded in Excel sheet format and analyzed through histograms, data charts, and correlation heatmaps. First, we analyze the distribution of total, day, and night data through histogram analysis, and identifiy the average, median, minimum, and maximum values by month through data chart analysis separating day and night to see how the data changes by month. Finally, we analyze the correlation of the data through a correlation heatmap analysis separating day and night. The results show a very strong positive correlation between temperature and soil temperature and soil EC and EC during the day, and a very strong positive correlation between temperature and soil temperature and soil EC and EC at night, and a strong negative correlation between temperature and soil EC.

Experimental Study of Internal Distribution of Temperature and Relative Humidity in Notebook LCD Module (노트북용 액정 모듈 내부의 온도 및 상대 습도 변화에 관한 실험적 연구)

  • Kim, Tae-Woo;Kim, Gi-Bin;Lee, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.217-221
    • /
    • 2012
  • As a part of basic research to improve screen quality, which deteriorates when strain occurs within optical sheets in LCD modules for laptop computers, a measurement system is needed to analyze the influence of heat and moisture, which are the main factors causing the strain. It is assumed that the existence of an air gap less of than 0.5 mm inside the LCD module causes humid air from outside to permeate through the module. To investigate this phenomenon, in this study a thin printed circuit board (PCB) of compact sensors that measure temperature and humidity is inserted into LCD modules, and thus, the changes in temperature and humidity can be analyzed in real time. The results can be used as basic data for simulation of the deformation behavior and structural design of LCD modules in the future.

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime

IoT-based Smart Switchboard Development for Power Supply of Entertainment Devices (엔터테인먼트 장치의 전원 공급을 위한 IoT 기반의 스마트 배전반 개발)

  • Kang, Yun-Jeong;Lee, Kwang-Jae;Choi, Dong-Oun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • In this study, a smart switchboard for power supply of entertainment devices was developed for the following purposes. First, the heat generated when the high-temperature and humid air inside is cooled by the thermoelectric module is smoothly discharged to the outside of the switchboard, thereby maximizing the cooling effect. So, it is possible to prevent excessive temperature rise inside the switchboard. Various problems such as condensation inside the switchboard can be prevented by controlling the temperature of the switchboard in which a fire occurs due to excessive heat in summer, removing moisture due to the cooling effect, and generating heat instead of cooling in winter. Second, it is a smart switchboard control system that can reduce the salt that may permeate inside the switchboard. Third, the smart switchboard system is an IoT-controlled switchboard that collects environmental data using a variety of sensors and can remotely control devices through a smartphone, and can be easily used in various fields.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.