• 제목/요약/키워드: Temperature Modeling

검색결과 1,727건 처리시간 0.033초

Predictive Modeling for Microbial Risk Assessment (MRA) from the Literature Experimental Data

  • Bahk, Gyung-Jin
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.137-142
    • /
    • 2009
  • One of the most important aspects of conducting this microbial risk assessment (MRA) is determining the model in microbial behaviors in food systems. However, to fully these modeling, large expenditures or newly laboratory experiments will be spent to do it. To overcome these problems, it has to be considered to develop the new strategies that can be used data in the published literatures. This study is to show whether or not the data set from the published experimental data has more value for modeling for MRA. To illustrate this suggestion, as example of data set, 4 published Salmonella survival in Cheddar cheese reports were used. Finally, using the GInaFiT tool, survival was modeled by nonlinear polynomial regression model describing the effect of temperature on Weibull model parameters. This model used data in the literatures is useful in describing behavior of Salmonella during different time and temperature conditions of cheese ripening.

SPICE를 이용한 커패시터 방전 임펄스 착자 회로의 특성 해석 (Characteristics Analysis of Capacitor Discharge Impulse Magnetizing Circuit using SPICE)

  • 백수현;김필수
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.206-215
    • /
    • 1994
  • A method for simulating general characteristics and temperature characteristics of discharging SCR of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristic of magnetizing circuit can be obtained, the efficient design of the magntizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, computation of the temperature rise of discharging SCR is very important since it gives some indication of thermal characteristic of discharging circuit. It is implemented on a 486 personal computer, and the modeling results are checked against experimental measures. The experimental results have been achived using 305[V] and 607[V] charging voltage, low-energy capacitor discharge impulse magnetizer-magnetizing fixture of air cleaner DC motor.

  • PDF

시간지체 순환신경망모형을 이용한 수문학적 모형화기법 (Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

열간 형단조 Nimonic 80A의 미세조직 변화 예측 (Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging)

  • 정호승;조종래;박희천;이성열
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

회체가스중합모델에 기초한 연소가스의 파장별 복사 성질 (WSGGM-Based Spectral Modeling for Radiation Properties of Combustion Products)

  • 김옥중;송태호
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.628-636
    • /
    • 1999
  • This work describes the low-resolution spectral modeling of the water vapor, carbon dioxide and their mixtures by applying the weighted-sum-of-gray-gas-gases model (WSGGM) to each narrow band. Proper modeling scheme of gray gas absorption coefficients vs temperature relation is suggested. Comparison between the modeled emissivity calculated from this relation and the 'true' emissivity obtained from the high temperature statistical narrow band parameters is made for a few typical narrow bands. Low resolution spectral intensities from one-dimensional layers are also obtained and examined for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with several gray gases. The results are compared with the narrow band spectral intensities obtained by a narrow band model-based code with Curtis-Godson approximation. Good agreement is found between them. Data bases including optimized modeling parameters and total and low-resolution spectral weighting factors are developed for water vapor, carbon dioxide and their mixtures. This model and obtained data bases, available from the authors' Internet site, can be appropriately applied to any radiative transfer equation solver.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

Direct Observation of Radiative Flux in the Southern Yellow Sea

  • Lu, Lian-Gang;Yu, Fei;Diao, Xinyuan;Guo, Jingsong;Wang, Huiwu;Wei, Chuanjie
    • Ocean Science Journal
    • /
    • 제43권2호
    • /
    • pp.115-126
    • /
    • 2008
  • Direct measurements of four radiative components at air-sea boundary layer were conducted in the southern Yellow Sea during three cruises (seasons) in 2007. Simultaneous observations of meteorological (cloud cover, air temperature and humidity) and oceanographic (sea surface temperature) parameters were carried out. Observational results of radiative fluxes and meteorological and oceanographic parameters are presented. Mean diurnal cycles of four radiative components, net radiation, and sea surface albedo are calculated to achieve averages in different seasons. Net radiative fluxes in three seasons (winter, spring, autumn) are 8, 146, $60\;W/m^2$, respectively. Comparisons between the observed radiative fluxes and those estimated with formulas are taken.

1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의 (Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model)

  • 노준우;김상호;신재기
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.

Measurement and Prediction of Damage Threshold of Gold Films During Femtosecond Laser Ablation

  • Balasubramani, T.;Kim, S.H.;Jeong, S.H.
    • 한국레이저가공학회지
    • /
    • 제11권4호
    • /
    • pp.13-20
    • /
    • 2008
  • The damage threshold measurement of gold films is carried out with ultrashort-pulse laser. An enhanced two temperature model is developed to encounter the limitation of linear modeling during ultrashort pulse laser ablation. In which the electron heat capacity is calculated using a quantum mechanical approach based on a Fermi-Dirac distribution, temperature-dependent electron thermal conductivity valid beyond the Fermi temperature is adopted, and reflectivity and absorption coefficient are estimated by applying a temperature-dependent electron relaxation time. The predicted damage threshold using the proposed enhanced modelclosely agreed with experimental results, demonstrating the importance of considering transient thermal and optical properties in the modeling of ultrashort pulse laser ablation.

  • PDF